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ABSTRACT 

The helicopter is an essential and unique means of 

transport nowadays and needs to hover in space for 

considerable amount of time. During hovering flight, the rotor 

blades continuously bend and twist causing an increased 

vibration level that affects the structural integrity of the rotor 

blade leading to ultimate blade failure. In order to predict the 

safe allowable vibration level of the helicopter rotor blade, it is 

important to properly estimate and monitor the vibration 

frequencies. Therefore, the mathematical model of a realistic 

helicopter rotor blade composed of composite material, is 

developed to estimate the characteristics of free and forced 

bending-torsion coupled vibration. The cross-sectional 

properties of the blade are calculated at first and are then 

included in the governing equations to solve the mathematical 

model. The natural frequencies and mode shapes of the 

composite helicopter rotor blade are evaluated for both the 

nonrotating and rotating cases. The time-varying bending and 

torsional deflections at the helicopter rotor blade tip are 

estimated with suitable initial conditions. The validation of the 

model is carried out by comparing the analytical frequencies 

with those obtained by the finite element model.   

Keywords: Vibration analysis, composite blade, hovering 

flight, cantilever beam, vertical deflection, finite element. 

NOMENCLATURE 

𝐴  cross-sectional area 

𝐴𝑑  rotor disk area 

𝐵 extensional stiffness of composite shell per unit width 

𝐷𝑏  total bending stiffness of the cross-section 

𝐷𝑡  total torsional stiffness of the cross-section 

𝐸 elastic modulus of an isotropic material 

𝐸1 elastic modulus of composite in fiber direction 

𝐸2 elastic modulus of composite in transverse direction 

𝐸𝑐𝑜𝑟𝑒  equivalent axial elastic modulus of core 

𝐸𝑠ℎ𝑒𝑙𝑙  equivalent axial elastic modulus of composite shell  

𝐹𝑧 external force on the helicopter blade along Z-axis 

𝐺12 in plane shear modulus of composite 

𝐺𝑐𝑜𝑟𝑒  equivalent shear modulus of core  

𝐺𝑠ℎ𝑒𝑙𝑙  equivalent shear modulus of composite shell 

𝐼𝑁𝐴 area moment of inertia about the neutral axis 

𝐼𝑝̅ area moment of inertia about the principal centroidal 

axis 

𝐽 ̅       polar area moment of inertia about the centroidal axis 

𝑀𝑥 external moment on the helicopter blade about X-axis 

𝑉∞ free stream air velocity 

𝑊 normal mode due to bending 

𝑊𝑔 total gross weight of the helicopter 

𝑐 chord length of the airfoil 

𝑑 distance between neutral axis and centroidal axis 

𝑒  distance between the centroid and shear center 

𝑓𝑛𝑏 n
th

 natural frequency governed by mainly bending 

𝑓𝑛𝑡 n
th

 natural frequency governed by mainly torsion 

ℎ𝑠ℎ𝑒𝑙𝑙  thickness of the composite shell 

𝑙 length of the helicopter rotor blade 

𝑢𝑝 air velocity normal to the rotor disk plane 

𝑢𝑡 linear blade velocity parallel to the rotor disk plane 

𝑤 vertical deflection due to bending along Z-axis 

𝑦̅ ordinate of any centroid 

𝛷 normal mode due to torsion 

𝛺 angular velocity of the rotor blade in rad/s 

𝛼𝑝  pitching angle of the rotor blade 

𝛽  blade angle prior to any deformation 
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𝛾 torsional constant of a section 

𝜅𝑚 polar mass radius of gyration about the elastic axis 

𝜅𝑚1,2 mass radii of gyration about neutral axis and axis 

normal to chord through shear center, respectively 

𝜃 rotation due to torsion about X-axis 

𝜈 Poisson’s ratio of an isotropic material 

𝜈12 major Poisson’s ratio of composite 

𝜌 density of material 

INTRODUCTION 

Compared to fixed wing aircraft, the helicopter 

possesses the unique capacity for vertical takeoff and landing, 

ease of access, hovering for extended periods of time, low 

speed maneuverability, and flying capability at high altitudes, 

which has made the helicopter a prolific transport solution with 

unrivaled versatility. Following this, uses of helicopters cover a 

variety of military and civil missions, where they need to hover 

for a significant amount of time by generating the vertical lift 

force in opposition to its weight which requires the rotor system 

to be operationally safe and efficient. However, the unsteady 

aerodynamic loads acting on the helicopter rotor blade and the 

higher rotational speed of the main rotor, give rise to significant  

levels of vibration. This vibration, if unnoticed and exceeding a 

certain level, can reduce the life of the rotor hub by damaging 

the heavy rotational components. Since it is unlikely to be able 

to fully eliminate the vibration for a rotary wing aircraft, an 

estimation of the maximum allowable level of vibration of the 

helicopter rotor blade is necessary. The frequencies of vibration 

and the time-varying deflections need to be properly calculated. 

The airfoil like cross-section of the helicopter rotor blade 

resembles a rotating cantilever beam having different elastic 

and inertial axes and, therefore, causes coupling between 

bending and torsional vibration. Moreover, when the blade is 

made up of composite material, different ply orientations affect 

the coupled natural frequencies. Therefore, it is important to 

investigate the nature of the bending-torsion coupled vibration 

for a composite helicopter rotor blade in order to identify the 

effect of the shear center position on the coupled frequencies. 

Vibratory loads transferred from the main rotor to the 

fuselage have been a critical concern from the earliest days of 

rotorcraft development [1, 2]. Depending on the flight regime, 

different phenomena become responsible for generating the 

vibratory loads on the blades. Previous works that showed 

some investigations on the helicopter hovering performance, 

varied in the techniques used for analyzing the dynamics based 

on different assumptions. The first step was to understand the 

behavior of the aerodynamic environment which created the 

unbalanced forces acting on the helicopter [3, 4], followed by 

the derivation of the fundamental equations of motion. For the 

hovering condition, motion of the helicopter blade is considered 

as the rotation of a flexible cantilever beam around an axis 

based on which the free vibration theory is developed [5, 6].   

Besides deriving the free vibration equations of 

motion, rigid body simulations were also carried out. A 

dynamic model of rotor blades for real-time helicopter 

simulation was presented which was based on the rigid body 

simulations, rather than fluid simulation methods [7]. Modeling 

of the helicopter rotor blade for flapping motion was done by 

some researchers; however, they considered only the rigid blade 

which, in reality, is flexible. A general equation describing the 

helicopter blade dynamics for large flap angle and large 

induced inflow angle of attack was derived and numerical 

simulations were performed for steady state conditions [8]. Zaw 

et al. [9] developed the mathematical model and carried out the 

stability analysis for an unmanned aerial helicopter using the 

minimum-complexity helicopter simulation model by 

MATLAB SIMULINK and considered rigid body dynamics. 

Numerical techniques were used for the formulation of the 

equations of motion of general dynamic systems with an 

emphasis on the equations of motion of helicopter blades [10]. 

Technical reports were documented after the wind 

tunnel tests for the helicopter and provided useful information 

about the pioneering research and specific design database [11–

14]. Helicopter blades reported to be tested experimentally are 

made up of different types of materials. However, instead of 

metallic blades, composite blades are widely used in modern 

helicopters due to their high strength to weight ratio [15]. 

Garinis et al. [16] carried out the modal analysis of the fully 

composite helicopter blade with honeycomb core to determine 

the structural mode shapes and natural frequencies. Friedmann 

et al. [17] developed a moderate deflection composite 

helicopter rotor blade model with an improved cross-sectional 

analysis based on the variational asymptotic approach. Among 

various numerical tools, the finite element (FE) techniques 

were known as powerful tools to model the rotor blade or a 

rotating beam for the vibration analysis. Hodges et al. [18] 

presented the methodologies for predicting the natural 

frequencies and mode shapes of composite beams with 

arbitrary cross-sections by FE techniques. Different types of FE 

methods were examined to verify their efficiencies by finding 

the frequencies of vibrations [19–21]. In general, most of the 

FE models contain some basic assumptions to simplify the 

complex aerodynamic behavior of the helicopter rotor blade.  

In most of the previous cases, simulations for rotor 

blades with different aerodynamic conditions were done 

considering the blade as a rigid one or FE simulations were 

done for free vibrations of a blade under pure bending. 

Therefore, in this paper, the governing equations of bending-

torsion coupled vibration of the helicopter rotor blade are 

developed with a realistic composite rotor blade cross-section 

to identify the vibration characteristics. The cross-sectional 

properties of the blade are calculated from the lamination and 

sandwich beam theory and are included in the one dimensional 

coupled governing equations of motion. Moreover, the time-

varying bending and torsional deflections at the blade tip are 

estimated by the normal mode method. An FE model of the 

helicopter rotor blade is created to find the natural frequencies 

of the coupled vibration for both the nonrotating and rotating 

cases. The convergence study of the model is checked and 

validation of the model is done by comparing the analytical 

natural frequencies with those obtained by the FE analysis. 
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PROPERTIES OF THE HELICOPTER BLADE 

The helicopter rotor blade used in this analysis 

belongs to the Messerschmitt-Bölkow-Blohm Bo 105 

helicopter with the parameters given in Table 1 [13]. From the 

viewpoint of a realistic helicopter rotor blade, the cross-section 

is considered to be made up of a thin outer orthotropic 

fiberglass-epoxy [22] composite shell having the fiber volume 

fraction as 0.6 and an inner thick isotropic core composed of 

polymethacrylimide (PMI) foam called Rohacell and 

honeycomb structures [23, 24] as shown in Fig. 1. The 

composite shell acts as a balanced laminate built up with four 

plies with a high strength to weight ratio compared to the inner 

core and can be considered as a sandwich beam. Properties of 

the blade materials are given in Tables 2 and 3 [23–25]. 

TABLE 1: Bo 105 MAIN ROTOR PARAMETERS 

Parameters Value Parameters Value 

𝑙 4.91 m 𝛺 44.5 rad/s 

𝑐 0.27 m Airfoil NACA 23012 

 

 
 

FIGURE 1: CROSS-SECTION OF THE HELICOPTER BLADE 

TABLE 2: PROPERTIES OF THE FIBERGLASS-EPOXY 
COMPOSITE OUTER SHELL 

Properties Value Properties Value 

𝜌 2100 kg/m
3
 𝜈12 0.28 

𝐸1 45e9 Pa 𝐺12 5.5e9 Pa 

𝐸2 12e9 Pa ℎ𝑠ℎ𝑒𝑙𝑙 0.002 m 

TABLE 3: PROPERTIES OF THE ROHACELL-HONEYCOMB 
ISOTROPIC INNER CORE 

Rohacell  Honeycomb 

Properties Value  Properties Value 

𝜌 75 kg/m
3
  𝜌 48 kg/m

3
  

𝐸 105e6 Pa  𝐸 128e6 Pa 

CROSS-SECTIONAL ANALYSIS OF THE BLADE 

Analytical estimation of the cross-sectional properties 

of the whole composite helicopter rotor blade is difficult to 

obtain because of the complex geometry and asymmetry of the 

cross-section described in Fig. 2. However, some reasonable 

assumptions make the cross-sectional analysis approximate but 

accurate enough by using the fundamental principles of 

composite mechanics and classical lamination plate theory. The 

helicopter rotor blade can be considered as a thin plate so that 

the plane stress assumptions hold good. However, the curvature 

effect of the blade section contour must be taken into account. 

The basic principle of the cross-sectional analysis assumes that 

the equivalent extensional modulus of elasticity will be the 

same for the curved composite shell and for a plate laminate 

made up of the same number of layers, same material, and same 

length. From that principle, the equivalent extensional modulus 

of elasticity for the composite shell is estimated and therefore, 

the extensional stiffness of the shell per unit width is 

determined. An analytical procedure is developed to find the 

bending stiffness of the cross-section using the extensional 

stiffness per unit width [26]. To apply this theory, the equation 

of the reference surface profile of the shell is necessary. To 

determine the equation of the reference curve which is the 

middle surface of the shell, a curve fitting operation is carried 

out in MATLAB. At first, the outermost shell profile in Fig. 1 is 

generated from the NACA 23012 data [27] and then the 

reference curve data set is generated from the former having an 

offset distance of 0.001 m using differential calculus slope 

theory. Next, these data points are centered and fitted in 

MATLAB to get an approximate equation in the form of a 10
th

 

degree polynomial. This theory is applied to find the natural 

frequencies of free vibration of a thin circular composite shell 

composed of four layers [18] and good agreement is found 

between the natural frequencies obtained from the theory and 

from Ref. 18. The geometric sectional properties are calculated 

from the commercially available computer aided design 

package SolidWorks 2015.  

 

 

FIGURE 2: LOCATION OF THE CA and NA OF THE BLADE 

In Fig. 2, the 𝛼 and 𝛽 axes are the coordinate axes of 

the outermost profile of the blade cross-section. From Fig. 2, 

the centroidal axis (CA) and the principal centroidal 𝑥̅𝑝-axis are 

not exactly aligned. However, the separation angle is 

approximately 1° and is negligibly small to affect the section 

properties of both the shell and the core. The bending stiffness 
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of the whole cross-section is to be calculated with respect to the 

neutral axis (NA) of the section which is not located at the 

geometric centroid of the cross-section. The geometric 

properties of the cross-section are: 𝑦̅𝑠ℎ𝑒𝑙𝑙  = 2.86e-3 m, 𝑦̅𝑐𝑜𝑟𝑒 = 

3.57e-3 m,  𝐴𝑠ℎ𝑒𝑙𝑙 = 1.06e-3 m
2
, 𝐴𝑟 = 8.97e-4 m

2
, 𝐴ℎ = 4.03e-3 

m
2
, 𝐼𝑝̅𝑠ℎ𝑒𝑙𝑙 = 1.33e-7 m

4
, 𝐼𝑝̅𝑐𝑜𝑟𝑒 = 2.27e-7 m

4
, 𝛾𝑠ℎ𝑒𝑙𝑙  = 3.869e-7 

m
4
, 𝛾𝑐𝑜𝑟𝑒 = 7.839e-7 m

4
, and 𝑒 = 0.009 m, where 𝑟 and ℎ stand 

for the Rohacell and honeycomb structures, respectively. 

Extensional Stiffness Per Unit Width 

From lamination theory [28], 

𝐸𝑠ℎ𝑒𝑙𝑙 =
𝐴11𝐴22 − 𝐴12

2

ℎ𝑠ℎ𝑒𝑙𝑙𝐴22

.                                       (1) 

 

where, 𝐴11, 𝐴12, and 𝐴22 are the elements of the 

extensional stiffness matrix of a composite laminate. Then 𝐵 is 

evaluated as,  

 

𝐵 =
𝐸𝑠ℎ𝑒𝑙𝑙𝐴𝑠ℎ𝑒𝑙𝑙

𝑠𝑢𝑟𝑒𝑓 + 𝑠𝑙𝑟𝑒𝑓
.                                         (2) 

 

where, 𝑠𝑢𝑟𝑒𝑓  and 𝑠𝑙𝑟𝑒𝑓  are the arc lengths of the upper 

and the lower reference curves, respectively, shown in Fig. 2. 

Bending Stiffness 

Using the value of 𝐵 and including the curvature effect 

of the cross-sectional profile, bending stiffness of the composite 

shell is estimated as [26],    
 

𝐸𝑠ℎ𝑒𝑙𝑙𝐼𝑝̅𝑠ℎ𝑒𝑙𝑙 = 𝐵 [∫ 𝑦𝑢𝑟𝑒𝑓
2 𝑑𝑠 + ∫ 𝑦𝑙𝑟𝑒𝑓

2 𝑑𝑠
0.2651

0.001

0.2651

0.001

].     (3) 

 

where, 𝑦𝑢𝑟𝑒𝑓  and 𝑦𝑙𝑟𝑒𝑓  are the ordinates of the upper 

and lower reference curves obtained from MATLAB curve 

fitting. Equation (4) provides a reasonable modulus for the core 

when the constituent materials have relatively close 𝐸 values.  

 

𝐸𝑐𝑜𝑟𝑒 =
𝐸𝑟𝐴𝑟 + 𝐸ℎ𝐴ℎ

𝐴𝑟 + 𝐴ℎ

.                                        (4) 

 

where, 𝑟 and ℎ stands for the Rohacell and honeycomb 

structures. Considering linear strain distribution, location of the 

NA for the whole cross-section is found from Eqs. (6) and (7). 

 

𝐸𝑠ℎ𝑒𝑙𝑙𝑑𝑠ℎ𝑒𝑙𝑙𝐴𝑠ℎ𝑒𝑙𝑙 + 𝐸𝑐𝑜𝑟𝑒𝑑𝑐𝑜𝑟𝑒𝐴𝑐𝑜𝑟𝑒 = 0.                   (5) 

⇒ 𝐸𝑠ℎ𝑒𝑙𝑙(𝑦𝑢𝑝𝑝𝑒𝑟 − ℎ1 − 𝑦̅𝑠ℎ𝑒𝑙𝑙)𝐴𝑠ℎ𝑒𝑙𝑙

+ 𝐸𝑐𝑜𝑟𝑒  (𝑦𝑢𝑝𝑝𝑒𝑟 − ℎ1 − 𝑦̅𝑐𝑜𝑟𝑒)𝐴𝑐𝑜𝑟𝑒 = 0.  (6) 

ℎ1 + ℎ2 = 0.03.                                             (7) 

In Eq. (6), 𝑦𝑢𝑝𝑝𝑒𝑟 = 0.0183 m and 𝑦𝑙𝑜𝑤𝑒𝑟  = − 0.0117 

m, defined as the ordinates of the topmost and bottommost 

surfaces, respectively, at 𝛼 = 0.123 m, which is the location of 

the centroid of the whole section. 𝐷𝑏  is calculated from Eq. (10) 

using Eqs. (8) and (9). 

 

𝐼𝑁𝐴𝑠ℎ𝑒𝑙𝑙 = 𝐼𝑝̅𝑠ℎ𝑒𝑙𝑙 + 𝐴𝑠ℎ𝑒𝑙𝑙𝑑𝑠ℎ𝑒𝑙𝑙
2 .                          (8) 

𝐼𝑁𝐴𝑐𝑜𝑟𝑒 = 𝐼𝑝̅𝑐𝑜𝑟𝑒 + 𝐴𝑐𝑜𝑟𝑒𝑑𝑐𝑜𝑟𝑒
2 .                           (9) 

𝐷𝑏 = 𝐸𝑠ℎ𝑒𝑙𝑙𝐼𝑁𝐴𝑠ℎ𝑒𝑙𝑙 + 𝐸𝑐𝑜𝑟𝑒𝐼𝑁𝐴𝑐𝑜𝑟𝑒 .                      (10)  

Torsional Stiffness 

The estimate of the individual shear modulus for the 

shell and the core can be approximated as [28], 
 

𝐺𝑠ℎ𝑒𝑙𝑙 =
𝐴66

ℎ𝑠ℎ𝑒𝑙𝑙
.                                         (11) 

𝐺𝑐𝑜𝑟𝑒 =
𝐸𝑐𝑜𝑟𝑒

2(1 + 𝜈)
.                                     (12) 

 

 where, 𝐴66 is the element of the extensional stiffness 

matrix of a composite laminate. Equation (12) is an 

approximate validation since both the Rohacell foam and 

honeycomb structures are isotropic and use the same 𝜈. The 

shear center and centroid of the cross-section are relatively 

close to each other and the total torsional stiffness is written as, 

 

𝐷𝑡 = 𝐺𝑠ℎ𝑒𝑙𝑙𝛾𝑐𝑜𝑚𝑝 + 𝐺𝑐𝑜𝑟𝑒𝛾𝑐𝑜𝑟𝑒 .                   (13) 

Mass Per Unit Length 

The mass per unit length of the rotor blade section is 

the sum of the masses per unit length of all the constituent 

materials expressed as,  

 

𝜌𝐴 =∑(𝜌𝐴)𝑖 .

3

𝑖=1

                                  (14) 

⇒ 𝜌𝐴 = 𝜌𝑠ℎ𝑒𝑙𝑙𝐴𝑠ℎ𝑒𝑙𝑙 + 𝜌𝑟𝐴𝑟 + 𝜌ℎ𝐴ℎ.               (15) 

ANALYTICAL FORMULATION 

Free Vibration 

The helicopter rotor blade element considered for the 

bending-torsion coupled vibration analysis is described in Fig. 

3. To derive the coupled equations of motion, the blade cross-

section needs to have at least one axis of symmetry which is not 

the case for the proposed blade cross-section. This situation is 

overcome by the fact that the principal centroidal 𝑥̅𝑝-axis is at 

an angle of only 1° with the horizontal CA (Fig. 2), not large 

enough to affect the inertia properties. Therefore, the blade can 

be considered symmetric with respect to the principal 

centroidal 𝑥̅𝑝-axis, where 𝑒 is considered a horizontal distance. 

The effect of the cross-sectional warping is ignored for its 

relatively minor role for solid sections [20]. The equations of 

motion of the coupled bending-torsion vibration of the rotor 
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blade for the nonrotating and rotating cases with zero external 

force and moment per unit length, 𝐹𝑧/𝑙(𝑥, 𝑡) and 𝑀𝑥/𝑙(𝑥, 𝑡), 
respectively, are given by Eqs. (16)–(19) [29–30]. The axial 

tensile force developed due to the centrifugal action is assumed 

to pass through the geometric centroid of the cross-section.  
  

 

FIGURE 3: THE ROTOR BLADE ELEMENT SUBJECTED TO 
BENDING AND TORSIONAL DEFORMATIONS 

Equations of Motion: Nonrotating Case 

𝐷𝑏
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
+ 𝜌𝐴 [

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
− 𝑒

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
] = 0.         (16) 

𝐷𝑡
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴 [𝑒

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
− 𝑒2

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
] − 𝜌𝐽 ̅

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2

= 0.                                                                  (17) 

Equations of Motion: Rotating Case 

𝐷𝑏
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
−

𝜕

𝜕𝑥
(𝑇(𝑥)

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
)

− 𝜌𝐴𝑒𝛺2𝑐𝑜𝑠𝛽 [𝜃 + 𝑥
𝜕𝜃(𝑥, 𝑡)

𝜕𝑥
]

+ 𝜌𝐴 [
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+ 𝑒

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
𝑐𝑜𝑠𝛽]

= 0.                                                                  (18) 

−𝐷𝑡
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴𝑒𝛺2𝑥

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
𝑐𝑜𝑠𝛽

+ 𝜌𝐴𝛺2[𝜅𝑚2
2 − 𝜅𝑚1

2 ]𝜃(𝑥, 𝑡) 𝑐𝑜𝑠(2𝛽)

+ 𝜌𝐴𝜅𝑚
2
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
+ 𝜌𝐴𝑒

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
𝑐𝑜𝑠𝛽

= 0.                                                                  (19) 

where,  

𝑇(𝑥) = ∫ 𝜌𝐴𝛺2𝑥𝑑𝑥.                                  (20)
𝑙

𝑥

 

Forced Vibration: Aerodynamic Force and Moment 

 When the helicopter maintains its hovering flight, the 

total lift produced by the rotor blades must be at least equal to 

the 𝑊𝑔. This amount of lift can be calculated from the blade 

element theory (BET) [3]. From the assumption of low disk 

loading, the inflow ratio is considered to be as small as 0.06. 

Then, the ratio of the 𝑢𝑝 and 𝑢𝑡 also becomes small and this 

small angle assumption is applicable for the inflow angle, the 

pitching angle, and the angle of attack. For the hovering flight 

with no axial velocity, the induced velocity becomes equal to 

𝑢𝑝. Also, it is assumed that the stall and the compressibility 

effects are negligible so that the lift coefficient is linearly 

related to the angle of attack. There is always some free stream 

velocity at any altitude which is also considered to find the lift 

equation using the BET. Finally, the aerodynamic lift and 

moment per unit length for a single blade are given by,  

 
𝐹𝑧|𝐵𝐸𝑇
𝑙

(𝑥, 𝑡) =
1

2
𝜌𝑎𝑖𝑟𝑢𝑡

2𝑐𝑎 (𝛼𝑝 −
𝑢𝑝

𝑢𝑡
).                 (21) 

𝑀𝑥

𝑙
(𝑥, 𝑡) = 0.0555

𝐹𝑧|𝐵𝐸𝑇
𝑙

(𝑥, 𝑡).                      (22) 

where,  

𝑢𝑡 = [𝛺𝑥 + 𝑉∞ 𝑠𝑖𝑛(𝛺𝑡)].                           (23) 

𝑢𝑝 = √𝑊𝑔/2𝜌𝑎𝑖𝑟𝐴𝑑.                               (24) 

 

with 𝑎 = 5.7, 𝜌𝑎𝑖𝑟  = 1.225 kg/m
3
, 𝑉∞ = 0.5 m/s, 𝑊𝑔 = 

24525 N, and 𝐴𝑑 = 76 m
2
. It is conventional to consider that 

𝐹𝑧|𝐵𝐸𝑇/𝑙 passes through the aerodynamic center which is 1/4 of 

the chord from the leading edge. 𝑀𝑥/𝑙 is the moment of 

𝐹𝑧|𝐵𝐸𝑇/𝑙 about the mass center of the blade cross-section, since, 

the shear center and the mass center of the cross-section are 

very close. For a specific value of 𝛺, if 𝛼𝑝 is much greater, then 

𝐹𝑧|𝐵𝐸𝑇  for a single blade can exceed the total lift force 

estimated from the disk loading (DL), where, 𝐷𝐿 = 𝑊𝑔/𝐴𝑑. 

Therefore, an optimization is made between 𝛺 and 𝛼𝑝, unless 

the following relationship for a single blade is satisfied, 
 

𝐹𝑧|𝐵𝐸𝑇 ≈ 𝐹𝑧|𝐷𝐿 .                                    (25) 

Equations of Motion: Forced Vibration 

For a single blade, 𝐹𝑧|𝐷𝐿 = (𝐷𝐿)𝑐𝑙 = 428 N. Using 

Eq. (25), for 𝛺 = 44.5 rad/s, 𝛼𝑝 is found to be 0.5° and the 

forced vibration equations with 𝛽 = 𝛼𝑝 take the form as 

mentioned below: 
 

𝐷𝑏
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
−

𝜕

𝜕𝑥
(𝑇(𝑥)

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
)

− 𝜌𝐴𝑒𝛺2𝑐𝑜𝑠𝛼𝑝 [𝜃 + 𝑥
𝜕𝜃(𝑥, 𝑡)

𝜕𝑥
]

+ 𝜌𝐴 [
𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
+ 𝑒

𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
𝑐𝑜𝑠𝛼𝑝]

=
𝐹𝑧|𝐵𝐸𝑇
𝑙

(𝑥, 𝑡).                                              (26) 

 

  

Elastic axis 

Mass axis 

  

  

  

Centrifugal  

force 
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−𝐷𝑡
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴𝑒𝛺2𝑥

𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
𝑐𝑜𝑠𝛼𝑝

+ 𝜌𝐴𝛺2[𝜅𝑚2
2 − 𝜅𝑚1

2 ]𝜃(𝑥, 𝑡) 𝑐𝑜𝑠(2𝛼𝑝)

+ 𝜌𝐴𝜅𝑚
2
𝜕2𝜃(𝑥, 𝑡)

𝜕𝑡2
+ 𝜌𝐴𝑒

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑡2
𝑐𝑜𝑠𝛼𝑝

=
𝑀𝑥

𝑙
(𝑥, 𝑡).                                                    (27) 

Boundary Conditions 

Solutions of the boundary value problems in Eqs. 

(16)–(19) and Eqs. (26)–(27) must satisfy the relevant boundary 

conditions specified as, 

 

𝑎𝑡 𝑥 = 0:     𝑤(0, 𝑡) = 0. ;    
𝑑𝑤(0, 𝑡)

𝑑𝑥
= 0. ;   𝜃(0, 𝑡) = 0.   (28) 

𝑎𝑡 𝑥 = 𝑙: 
𝑑2𝑤(𝑙, 𝑡)

𝑑𝑥2
= 0. ;  

𝑑3𝑤(𝑙, 𝑡)

𝑑𝑥3
= 0. ;  

𝑑𝜃(𝑙, 𝑡)

𝑑𝑥
= 0.   (29) 

Initial Conditions 

The initial conditions for Eqs. (26)–(27) are 

determined using linear deflection and angular deformation 

assumptions and are stated as,  

 

𝑤(𝑥, 0) = 0.0175𝑥. ;           
𝜕𝑤

𝜕𝑡
(𝑥, 𝑡) = 0.                  (30) 

𝜃(𝑥, 0) = 0.005332𝑥. ;        
𝜕𝜃

𝜕𝑡
(𝑥, 𝑡) = 0.                  (31) 

Solution Strategy: Free Vibration-Nonrotating Case 

Solutions of Eqs. (16)–(17), after satisfying Eqs. (28)–

(29) assume the forms,  
 

𝑤(𝑥, 𝑡) = 𝑊(𝑥)𝐶1 cos(𝜔𝑡 + 𝜃1).                     (32) 

𝜃(𝑥, 𝑡) = 𝛷(𝑥)𝐶2 cos(𝜔𝑡 + 𝜃2).                      (33) 
where,  

𝑊(𝑥) = 𝑎𝑛[cosh(𝛽𝑛𝑥) − cos(𝛽𝑛𝑥)  
− 𝜎𝑛[sinh(𝛽𝑛𝑥) − sin(𝛽𝑛𝑥)] ]
= 𝑎𝑛𝐹(𝑥).                                                       (34) 

𝛷(𝑥) = 𝑏𝑛 sin [
(2𝑛 − 1)𝜋𝑥

2𝑙
] = 𝑏𝑛𝐻(𝑥).               (35) 

𝜎𝑛 =
sinh(𝛽𝑛𝑙) − sin(𝛽𝑛𝑙)

cosh(𝛽𝑛𝑙) + cos(𝛽𝑛𝑙)
.                       (36) 

with 𝑎𝑛 and 𝑏𝑛 as arbitrary constants, 𝛽𝑛𝑙 as the root 

of the characteristic equation of transverse vibration of a 

cantilever beam [29], and 𝜔 as the natural frequency in rad/s. 

Using Eqs. (32)–(33) into Eqs. (16)–(17) with 𝐶1 = 𝐶2 

and 𝜃1 = 𝜃2, 

 

𝐷𝑏𝑊
′′′′(𝑥) = 𝜌𝐴𝜔2[𝑊(𝑥) − 𝑒𝛷(𝑥)].               (37) 

𝐷𝑡𝛷
′′(𝑥) = 𝜌𝐴𝜔2𝑒[𝑊(𝑥) − 𝑒𝛷(𝑥)] − 𝜌𝐽𝜔̅2𝛷(𝑥).   (38) 

 

Substituting Eqs. (34)–(35) into Eqs. (37)–(38),  

 

[𝐷𝑏𝛽𝑛
4𝐹(𝑥) − 𝜌𝐴𝜔𝑛

2𝐹(𝑥)]𝑎𝑛 + 𝜌𝐴𝜔𝑛
2𝑒𝐻(𝑥)𝑏𝑛 = 0.  (39) 

𝜌𝐴𝜔𝑛
2𝑒𝐹(𝑥)𝑎𝑛 + [𝐷𝑡𝑄𝑛𝐻(𝑥) − 𝜌𝐴𝜔𝑛

2𝑒2𝐻(𝑥) − 𝜌𝐽𝜔̅𝑛
2𝐻(𝑥)]𝑏𝑛

= 0.                                                                  (40) 

where,  

𝑄𝑛 = (2𝑛 − 1)2𝜋2/4𝑙2.                               (41) 

Solution of Eqs. (39)–(40) requires the determinant of 

the coefficients of 𝑎𝑛 and 𝑏𝑛 to be vanished as, 

 

|
(𝐷𝑏𝛽𝑛

4 − 𝜌𝐴𝜔𝑛
2)𝐹(𝑥) 𝜌𝐴𝜔𝑛

2𝑒𝐻(𝑥)

𝜌𝐴𝜔𝑛
2𝑒𝐹(𝑥) (𝐷𝑡𝑄𝑛 − 𝜌𝐴𝜔𝑛

2𝑒2 − 𝜌𝐽𝜔̅𝑛
2)𝐻(𝑥)

|

= 0.                                                                  (42) 
from which, 
 

𝑓𝑛𝑏 =
1

2𝜋
√𝑢

2 − √(𝑢2)2 − 4𝑣2

2𝑘2
.                       (43) 

and, 

𝑓𝑛𝑡 =
1

2𝜋
√𝑢

2 + √(𝑢2)2 − 4𝑣2

2𝑘2
.                       (44) 

where, 𝑝2 = 𝑄𝑛, 𝑢2 = 𝑝2𝑞2 + 𝑔2𝑒2𝛽𝑛
4 + 𝑘2𝑔2𝛽𝑛

4, 𝑣2 =
𝑘2𝑔2𝛽𝑛

4𝑝2𝑞2, 𝑞2 = 𝐷𝑡/𝜌𝐴, 𝑔2 = 𝐷𝑏/𝜌𝐴, 𝑘2 = 𝐽/̅𝐴, and 

𝐴 = 𝐴𝑠ℎ𝑒𝑙𝑙 + 𝐴𝑐𝑜𝑟𝑒, with 𝐴𝑐𝑜𝑟𝑒 = 𝐴𝑟 + 𝐴ℎ. 

Solution Strategy: Free Vibration-Rotating Case 

For the rotating slender blade, the rotational stiffness 

becomes much higher than the normal bending stiffness and 

affects 𝑓𝑛𝑏 significantly leaving 𝑓𝑛𝑡 almost unaffected. 

Moreover, 𝑒 in Eqs. (18) and (19) is small enough compared to 

𝑐 for which the term 𝑔2𝑒2𝛽𝑛
4 becomes negligible to maintain a 

significant coupling between bending and torsion. These two 

assumptions suggest that, the uncoupled bending vibration 

solution strategy can offer very good results as a substitute for 

the coupled vibration solution. However, use of this method 

requires the mode shape of the rotating blade [6] due to 

uncoupled bending vibration. When this is included, Eqs. (18) 

and (19) are considered to be weakly coupled and 𝑓𝑛𝑏 is 

approximated as, 
 

𝑓𝑛𝑏 =
1

2𝜋
√

𝐷𝑏
𝜌𝐴𝑙4

𝛼1
𝛼3

+ 0.5Ω2
𝛼2
𝛼3
.                              (45) 
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where, values of 𝛼1, 𝛼2, and 𝛼3 are listed in Table 4 

for the first three modes. Unlike 𝑓𝑛𝑏, 𝑓𝑛𝑡 would not be 

influenced significantly by the rotational stiffness and is 

increased only by a slight amount. This is evident in the results 

and discussions section.  

TABLE 4: VALUES OF 𝜶𝟏, 𝜶𝟐, AND 𝜶𝟑 FOR THE FIRST 
THREE BENDING MODES OF A ROTATING BLADE 

𝑛 𝛽𝑛𝑙 𝛼1 𝛼2 𝛼3 

1 1.875 22.95 4.43 1.86 

2 4.694 468.04 12.49 0.964 

3 7.855 3812.81 35.78 1.00 

Solution Strategy: Forced Vibration 

The solution of the forced vibration in Eqs. (26)–(27) 

is approximated from the normal mode method as,  

𝑤(𝑥, 𝑡) = ∑𝜉𝑛(𝑡)𝑊𝑛𝑟(𝑥).                               (46)

∞

𝑛=1

 

𝜃(𝑥, 𝑡) = ∑𝜉𝑛(𝑡)𝛷𝑛(𝑥).                                

∞

𝑛=1

(47) 

where, 𝜉𝑛 is the generalized time coordinate for the n
th

 

mode and 𝑊𝑛𝑟 is the rotating blade mode shape [6] with, 
 

 𝜉𝑛(𝑡) = 𝐴𝑛 cos(𝜔𝑛𝑡) + 𝐵𝑛 sin(𝜔𝑛𝑡)

+
1

𝜌𝐴𝜔𝑛

∫ 𝑃𝑛(𝜏) sin[𝜔𝑛(𝑡 − 𝜏)] 𝑑𝜏
𝑡

0

.       (48) 

and,  
 

𝑃𝑛(𝜏) = ∫ [
𝐹𝑧|𝐵𝐸𝑇
𝑙

(𝑥, 𝜏)𝑊𝑛𝑟(𝑥) +
𝑀𝑥

𝑙
(𝑥, 𝜏)𝛷𝑛(𝑥)] 𝑑𝑥.     (49)

𝑙

0

 

 

The following orthogonality relationships are used to 

find the values of the contants 𝑎𝑛 and 𝑏𝑛.  
 

∫ 𝑊𝑛𝑟
2 (𝑥)𝑑𝑥 = 1. ; 

𝑙

0

      ∫ 𝛷𝑛
2(𝑥)𝑑𝑥 = 1.               (50) 

𝑙

0

 

FINITE ELEMENT ANALYSIS 

The FE model of the helicopter rotor blade is created 

using the commercially available FE package, Abaqus 6.12. 

The whole rotor blade is modeled as a cantilever beam 

composed of two parts: the outer composite shell and the inner 

isotropic core. Both the inner surface of the shell and the outer 

surface of the core are assigned tie constraints so that they act 

together as a whole body. Both the composite shell and the core 

of the blade are meshed with the finest element size of 0.008 m. 

After meshing, the shell has 41,752 elements and 41,820 nodes 

and the core has 77,978 elements and 99,630 nodes. For 

meshing the composite shell, S4R (four-node doubly curved 

thin or thick shell) elements are used and for the core, C3D8R 

(eight-node, linear brick, reduced integration) elements are 

used. 
 

RESULTS AND DISCUSSIONS 

Convergence Study 

 

FIGURE 4: VARIATION OF THE FUNDAMENTAL NATURAL 
FREQUENCIES OF THE COUPLED VIBRATION WITH 

DEGREES OF FREEDOM 

Figure 4 explains the variation of the fundamental 

natural frequencies of the bending-torsion coupled vibration 

with the degrees of freedom (DOF) for nonrotating and rotating 

cases. From Fig. 4, as the DOF increases, the trends of the 

natural frequencies become flattened after showing some initial 

change indicating that the solution is already converged. For 

both the nonrotating and the rotating cases, same mesh 

densities for both the shell and the core are used with the finest 

element size of 0.008 m. 

Frequencies and Mode Shapes: Nonrotating Case 

Table 5 lists the natural frequencies of the free 

bending-torsion coupled vibration of the nonrotating helicopter 

rotor blade for the first three modes by the analytical and the 

FE method. Here, 𝑓𝑛𝑏(n =  ,  ,  …) is for a mode where the 

deformation is mainly due to bending and torsion plays a minor 

role. Similarly, 𝑓𝑛𝑡  is for a mode where torsion causes the major 

deformation rather than bending. Table 5 shows reasonable 

agreement between the analytical and the FE results 

substantiating a good validation of the analytical method used 

to calculate the cross-sectional properties. The error level of 𝑓𝑛𝑏 

is lower than that of 𝑓𝑛𝑡  indicating that the analytical estimate 

of 𝐷𝑡  is a little higher than that from the FE method. However, 

𝑓𝑛𝑡 is less sensitive to error than 𝑓𝑛𝑏 and one reason for this is, 

for a particular mode, 𝑓𝑛𝑡 is much higher in magnitude than 𝑓𝑛𝑏. 

Another explanation is that, the blade can be considered as a 

long thin plate due to its geometry which is more prone to 

bending rather than torsion. The effect of 𝑒 on the bending-

torsion coupling is small as predicted before since the shear 
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center is very close to the centroid. This is justified by the first 

free uncoupled bending vibration frequency as [(1.875/

𝑙)2√𝐷𝑏/𝜌𝐴]/2𝜋 = 0.69 Hz which is the same as 𝑓1𝑏. However, 

in higher modes, the coupling effect can be influencial with 

relatively greater effect of 𝑒 on the natural frequencies which 

explains the decreasing error of 𝑓𝑛𝑡 for higher modes in Table 5. 

TABLE 5: NATURAL FREQUENCIES OF THE COUPLED 
VIBRATION FOR THE NONROTATING BLADE 

 
Natural frequencies, Hz 

% Error 
Analytical FE 

𝑓1𝑏 0.69 0.65 5.79 

𝑓1𝑡 35.64 31.36 12 

𝑓2𝑏 4.33 4.04 6.69 

𝑓2𝑡 106.92 93.93 12.12 

𝑓3𝑏 12.13 11.27 7.09 

𝑓3𝑡 178 157.10 11.74 

 

 

FIGURE 5: MODE SHAPES OF THE NONROTATING BLADE 
GOVERNED BY (a) 1

st
 MODE BENDING (b) 1

st
 MODE 

TORSION (c) 2
nd

 MODE BENDING (d) 2
nd

 MODE TORSION 
(e) 3

rd
 MODE BENDING (f) 3

rd
 MODE TORSION 

Figures 5(a) through 5(f) depict the mode shapes of 

the coupled bending-torsion vibration of the nonrotating 

helicopter rotor blade. The fundamental bending governed 

mode shape is given in Fig. 5(a) with no node along the length 

of the blade while Fig. 5(b) shows the fundamental torsion 

governed mode having a blue axis running parallel to the elastic 

axis of the blade. This axis goes through the shear center 

suggesting that the blade is about to rotate with respect to this 

axis. Figures 5(c) and 5(d) explain the similar phenomena for 

the second mode governed by bending and torsion, 

respectively, each having one node. Following this, Figs. 5(e) 

and 5(f) describe the third mode governed by bending and 

torsion, respectively, having two nodes each. Although, the 

coupling effect as seen from the mode shapes seems to be 

smaller, it can gradually become larger with higher modes as 

previously discussed. This seems possible from Fig. 5(f), where 

the blue axis gets distorted due to the coupled bending effect. 

From the first three mode shapes in Fig. 5, the blade can be 

considered to vibrate close to its fundamental modes. 

Frequencies and Mode Shapes: Rotating Case 

TABLE 6: NATURAL BENDING GOVERNED FREQUENCIES 
OF THE COUPLED VIBRATION FOR THE ROTATING BLADE 

 
Natural frequencies, Hz 

% Error 
Analytical FE 

𝑓1𝑏 7.77 7.27 6.43 

𝑓2𝑏 18.54 18.06 2.59 

𝑓3𝑏 32.30 30.17 6.59 

 

TABLE 7: NATURAL TORSION GOVERNED FREQUENCIES 
OF THE COUPLED VIBRATION FOR THE ROTATING BLADE 

 
Natural frequencies, Hz 

% Increase 
Nonrotating case Rotating case 

𝑓1𝑡 31.36 32.88 4.84 

𝑓2𝑡 93.93 95.45 1.61 

𝑓3𝑡 157.10 161.02 2.49 

As compared to 𝑓𝑛𝑏 results from Table 5 for the 

nonrotating case, Table 6 lists the first three 𝑓𝑛𝑏 results for the 

rotating case. This time, the 𝑓𝑛𝑏 is much higher than the 𝑓𝑛𝑏 for 

the nonrotating case. This is due to the addition of the rotational 

stiffness developed by the rotating blade for which the 

contribution is significantly greater than the nonrotating 𝑓𝑛𝑏. 

The high rotational stiffness weakens the coupling between 

bending and torsion and significantly affects the bending 

behavior, rather than torsion. Based on this fact, the solution 

methodology for the uncoupled bending vibration is proposed 

in place of the solution of the coupled case and the justification 

is seen from Table 6 where the frequencies obtained by the 

analytical and the FE method are in good agreement with the 

maximum error of 6.59%. The rotational stiffness also adds to 

the 𝑓𝑛𝑡, however, with much less priority compared to the 𝑓𝑛𝑏. 

Table 7 shows a comparison of the 𝑓𝑛𝑡 obtained from the FE 

analysis for the nonrotating and rotating cases where, 𝑓1𝑡 
increases by 4.84% for the rotating case. On the other hand, 

from Tables 5 and 6, 𝑓1𝑏 increases by 1018% showing the more 

severe influence of the rotational stiffness on 𝑓𝑛𝑏. 

 

(a) (b) 

(c) (d) 

(e) (f) 
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FIGURE 6: MODE SHAPES OF THE ROTATING BLADE 
GOVERNED BY (a) 1

st
 MODE BENDING (b) 1

st
 MODE 

TORSION (c) 2
nd

 MODE BENDING (d) 2
nd

 MODE TORSION 
(e) 3

rd
 MODE BENDING (f) 3

rd
 MODE TORSION 

Figures 6(a) through 6(f) describe the mode shapes of 

the coupled bending-torsion vibration of the rotating helicopter 

blade. These mode shapes are similar to that of Fig. 5; however, 

unlike Fig. 5, they are affected by the additional rotational 

stiffness which makes them more taut. The effect is, as usual, 

more significant for the bending governed modes than the 

torsion governed ones. The torsion governed mode shapes in 

Figs. 6(b), 6(d), and 6(f) show that they do not maintain the 

exact sinusoidal pattern as used in the nonrotating coupled 

vibration. This is also true for the bending governed modes, 

where the mode shape used, is that for the rotating blade. 

Time-Varying Deflections: Forced Vibration 

Figures 7 and 8 explain the characteristics of the time-

varying bending and torsional deflections, respectively, at the 

helicopter rotor blade tip (𝑥/𝑙 = 1), showing that both of them 

are harmonic in nature. From Fig. 7, the deflection starts from 

0.086 m and fluctuates between 0.119 and 0.01 m, all of which 

are positive. This is due to the positive magnitude of the forcing 

function for all the time. Starting from the initial deflected 

position, the tip is subjected to more downward deflection than 

upward and after that, finds its own equilibrium position. From 

Fig. 8, the torsional deflection starts from 0.026 rad and 

fluctuates between the maximum and minimum values of 0.025 

rad and -0.02 rad, respectively. Unlike the bending case, the 

torsional deflection goes through both positive and negative 

values from equilibrium position. This is attributable to the 

magnitude of the moment function which is small enough to 

create positive deflection all the time. The frequency of the 

deflection for bending is much less than that of the torsion. 
 

 

FIGURE 7: TIME-VARYING BENDING DEFLECTION AT THE 
TIP OF THE HELICOPTER ROTOR BLADE 

 

 

FIGURE 8: TIME-VARYING TORSIONAL DEFLECTION AT 
THE TIP OF THE HELICOPTER ROTOR BLADE 

CONCLUSIONS 

 In this paper, the coupled free and forced bending-

torsion vibration analysis of a composite helicopter rotor blade 

is carried out for hovering condition in terms of the natural 

frequencies and time-varying bending and torsional deflections 

by analytical and finite element methods. The following 

conclusions are drawn from the analysis:   

1. The nonrotating case frequencies are less than the 

rotating case frequencies for both bending and torsion governed 

modes. This is due to the additional stiffness developed by the 

centrifugal force which significantly affects the bending 

governed modes more than the torsion governed modes.

 2. The effect of the coupling between bending and 

torsion is not that large due to the relative closeness of the 

locations of the mass center and the shear center of the blade 

cross-section. 

3. The error between the analytical and the finite 

element torsion governed frequencies for the nonrotating case 

 

(c) 

(e) (f) 

(a) (b) 

(d) 
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are higher compared to that of the bending governed ones. This 

is due to relatively less accurate estimation of the torsional 

stiffness than the bending stiffness which is compensated by the 

additional rotational stiffness developed by the rotating blade.  

4. The effectiveness of the solution strategy for the 

coupled bending-torsion vibration for a rotating blade depends 

on the strength of coupling, the slenderness of the blade, and 

the magnitude of the rotational stiffness. For a slender blade 

with relatively high rotational stiffness and a closer shear center 

relative to the mass center, the uncoupled vibration solution 

strategy offers a reasonably accurate approximate solution. 

5. The time-varying bending and torsional deflections 

are both harmonic in nature and the frequency of torsional 

deflection is greater than that of the bending deflection. The 

torsional deflection changes from positive to negative peaks 

unlike the bending case because of lower order of magnitude of 

the moment load compared to that of the initial condition.   
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