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MILESTONES IN ROTORCRAFT AEROMECHANICS 
 
 

Wayne Johnson 
 

Ames Research Center 
 
 

SUMMARY 
 
 

The subject of this paper is milestones in rotorcraft aeromechanics. Aeromechanics covers much of what the engineer 
needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics cover many of the key performance 
attributes and many of the often-encountered problems in rotorcraft design. A milestone is a critical achievement, a turning 
point, or an event marking a significant change or stage in development. The milestones identified and discussed include 
the beginnings of aeromechanics with autogyro analysis, ground resonance, aeromechanics books, unsteady aerodynamics 
and airloads, nonuniform inflow and wakes, beams and dynamics, comprehensive analysis, computational fluid dynamics, 
and rotor airloads tests. The focus on milestones limits the scope of the history but allows the author to acknowledge his 
choices for key steps in the development of the science and engineering of rotorcraft. 
 
 
 

INTRODUCTION 

 
The subject of this paper is an aspect of the history of the 
engineering and science of our profession: milestones in 
rotorcraft aeromechanics. A milestone is a critical 
achievement, a turning point, or an event marking a 
significant change or stage in development. 

Defining “aeromechanics” is more difficult. Today’s 
dictionaries do not capture what the term means for the 
rotorcraft community. Typical definitions are not broad 
enough and do not reflect the multidisciplinary facet of the 
word as applied to rotorcraft: mechanics that deals with 
equilibrium and motion of gases and solid bodies 
immersed in them (Merriam-Webster); branch of 
mechanics that deals with air in motion or equilibrium 
(Webster); study of gases in motion and in equilibrium, 
including study of mechanical effects of gases on objects; 
mechanics is study of energy and forces (MSN Encarta). I 
propose the following definition: 

Aeromechanics: The branch of aeronautical 
engineering and science dealing with 
equilibrium, motion, and control of elastic 
rotorcraft in air. 

This paper covers rotorcraft aeromechanics development, 
including analysis and test. Invention of rotorcraft is not 
the subject. The focus is milestones, not the much larger 
task of presenting a history of aeromechanics. Much 
progress in aeromechanics development is made that is not 
marked by events that can be considered milestones, but it 
is the milestones that produce the interesting stories. The 
scope is narrowed to topics to which I have paid enough 
attention that I have an opinion about the critical steps. 
Table 1 summarizes my choices for milestones.  

Inventors do not wait for the analysts. Yet, presented with 
a new concept, analysis and test are needed to check the 
performance claims being made. Moreover, the developer 
needs engineering calculations if designs are to fulfill the 
potential of the concept. Aeromechanics covers much of 
what the rotorcraft engineer needs: performance, loads, 
vibration, stability, flight dynamics, and noise. These 
topics cover many of the key performance attributes and 
many of the often-encountered problems in rotorcraft 
designs. Thus, aeromechanics development is intertwined 
with the aircraft invention. Aeromechanics technology is 
pulled by invention and facilitates the aircraft 
development and evolution, as well as the next generation 
of invention. 
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TABLE 1. MILESTONES IN ROTORCRAFT 
AEROMECHANICS 

1926 The beginning Glauert 

1943 Ground resonance Coleman 

1952 Aeromechanics book Gessow and Myers 

1956 Hover wake geometry Gray 

1957 Unsteady 

aerodynamics 

Loewy 

1958 Beams Houbolt and Brooks 

1960 Digital computer IBM 

1962 Rotor airloads tests H-34 

1962 Airloads and wakes Miller, Piziali 

1972 Lateral flapping Harris 

1972 Multiblade coordinates Coleman, Hohenemser 

1974 Beams Hodges and Dowell 

1974 Comprehensive 

analysis 

C81 

1981 Dynamic inflow Pitt and Peters 

1981 Rotor aerodynamic 

state 

Bousman 

1981 Hover airloads Caradonna and Tung 

1982 Computational fluid 

dynamics 

Caradonna, Tung, and 

Desopper 

1984 CFD/CSD loose 

coupling 

Johnson 

1994 Rotor airloads tests UH-60A, HART 

 

THE BEGINNING OF AEROMECHANICS 

 
Rotorcraft aeromechanics analysis begins with Glauert. In 
a remarkable November 1926 report for the British 
Aeronautical Research Council (ref. 1) and a paper read 
two months later to the Royal Aeronautical Society (RAS) 
(ref. 2), Hermann Glauert of the Royal Aircraft 
Establishment (RAE) (fig. 1) gave us the foundations of 
induced and profile power analysis for rotors, and 
introduced blade element theory for performance and hub 
loads of flapping rotors in forward flight. 

As described in the RAS lecture, the impetus for this work 
was the demonstration flights in Britain of the Cierva 
C.6A autogyro, carried out at Farnborough in October of 
1925 (fig. 2), and a lecture by Juan de la Cierva that was 
read to the RAS on October 22 (ref. 3). The RAE work 
was motivated by the need to check the claims that Cierva 
was making for his aircraft. The first general account of 

 

 

Figure 1. H. Glauert of the Royal Aircraft Establishment. 

 

Figure 2. C.6A autogyro at Farnborough. 

Cierva’s invention was received in Britain in February 
1925 (ref. 4), which led immediately to preliminary wind 
tunnel tests (reported in May 1925) and a theoretical 
investigation first reported in November 1925. This initial 
presentation of the theory gave a maximum L / D  that 
proved to be in good agreement with the results from 
subsequent wind tunnel tests. Following the C.6A 
demonstration, wind tunnel tests and model autogyro drop 
tests were conducted at the National Physical Laboratory 
(NPL) and the RAE (1926–1927). The more detailed 
theory (ref. 1) provided a satisfactory estimate of 
maximum lift, an account of flapping, and a qualitative 
explanation of the side force (ref. 4). The theory was 
extended by C.N.H. Lock of the NPL in an Aeronautical 
Research Council (ARC) report of 1927 (ref. 5). 
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Induced velocity 

Glauert proposed an expression (usually given his name) 
for the rotor induced velocity based on an argument that 
has not since been improved. He made the connection 
between propeller and wing induced power. From 
reference 2: 

“The axial velocity u  through the disc of the 
windmill is less than the undisturbed velocity 
V sin i  owing to the interference of induced 
velocity caused by the windmill itself. The 
determination of this induced velocity or of the 
relationship between the velocities u  and V sin i  
is undoubtedly the most fundamental point in the 
development of the theory of the gyroplane.” 

Here i  is the disk incidence angle and V  is the flight 
speed. 

“Firstly, the momentum equation for an airscrew 
of radius R  giving a thrust T  is 

T = 2πR2ρuv  

where u  is the velocity through the airscrew disc 
and v  is the induced velocity at the disc, so that 
2v  is the slipstream velocity. 

Secondly, the equation for the normal induced 
velocity v  of an aerofoil of semi-span s  with lift 
L  distributed elliptically across the span is 

L = 2πs2ρVv  

These two expressions may now be written in the 
general form 

(Force) = 2 (Mass affected) ×  (induced velocity) 

and in each case the mass affected is the product 
of the density, of the area of the circle on the 
span as diameter, and of the velocity through this 
circle. The direction of the induced velocity is 
always opposite to that of the force. This general 
expression will therefore be taken to apply also 
to the case of the inclined windmill of a 
gyroplane. The induced velocity v  will be 
directed downwards along the shaft and its 
magnitude will be determined by the equation 

T = 2πR2ρ ′ V v  

where ′ V  is the resultant of the velocities V  and 
v .” 

Glauert (ref. 1) characterized the result v = T /2πR2ρ ′ V  as 
a “logical generalization of the ordinary aerofoil formula,” 
reducing for small i  to the standard formula for the 
normal induced velocity of an aerofoil of semi-span R , 
and for i  nearly 90 degrees to the ordinary momentum 
formula for an airscrew. “It is anticipated therefore that 
the formula will be valid over a wide range of angle of 
incidence.” The key fact permitting this generalization is 
that the mass flow affected by a wing is that through a 
circle around the wing span. Glauert recognized that for a 
circular wing this circle has the same area as the rotor 
disk. Because for an autogyro the edgewise velocity is 
considerably greater than the axial velocity, “the induced 
velocity due to the system of trailing vortices will 
correspond more closely to the induced velocity of an 
aerofoil than to that usually associated with an airscrew 
and its slipstream.” 

Flapping and hub forces 

Glauert introduced blade element theory for edgewise-
moving rotors. “The autogyro is essentially a windmill of 
low pitch working in a sidewind, and it is natural to apply 
to it the modern methods of strip theory combined with 
the Prandtl theory of interference, which have been so 
successful in the case of the monoplane wing and the 
ordinary airscrew” (ref. 5). Glauert developed expressions 
for the blade section velocities including flight speed, 
rotation, flapping, and induced velocity. The section 
analysis was based on two-dimensional airfoil 
characteristics with a constant lift-curve slope and a mean 
drag coefficient. “The aerodynamic characteristics of the 
aerofoil section must be taken to correspond to two 
dimensional motion or infinite aspect ratio in accordance 
with modern aerofoil and airscrew theory” (ref. 2). 
Glauert solved the flapping equation of motion obtained 
from equilibrium of inertial, centrifugal, aerodynamic, and 
weight moments about the flap hinge (with no hinge 
offset). 

Glauert neglected squares and higher powers of advance 
ratio μ . Considering the breakdown of the small angle 
assumption near reverse flow, he viewed the limit of 
validity to be μ < 0.5. The maximum speed of the C.6A 
gave about μ = 0.4, although later autogyros would 
operate at much higher advance ratios. However, an order 
μ  blade element analysis led to performance estimates 
more pessimistic than those obtained by energy methods. 
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Glauert developed equations for the thrust and torque ( CT  
and CQ , to first order independent of μ ), drag and side 
force ( C H  and CY , linear in μ ), and first harmonic 
flapping (linear in μ ). The equation CQ = 0 was solved 
for the inflow ratio. 

In a report published the next year (1927) (ref. 5), Lock 
eliminated the order μ  assumption of the blade element 
analysis, and verified that the blade element analysis and 
energy method gave identical performance results. He also 
added cyclic pitch, and solved for the higher harmonics of 
flap motion. 

Longitudinal inflow gradient 

Glauert’s result for lateral flapping and side force implied 
a lateral shaft-axis force proportional to thrust and forward 
speed, the direction being to port (the retreating side) with 
curved blades and to starboard with straight blades. This 
did not agree with the observed lateral movement of the 
shaft on the Cierva autogyro. From reference 1: 

“Experimentally the lateral force appears to be to 
port at high speed and to starboard at low speed. 
Thus the sense of the variation of the lateral force 
with speed has been obtained correctly, but there 
is a discrepancy in the value at low speeds. To 
explain this divergence it is necessary to abandon 
the assumption that the axial velocity u  is 
constant over the whole disc and to consider the 
effect of a varying induced velocity. 

At small angles of incidence, when the windmill 
give rise to a trailing vortex sheet very similar to 
that of an aerofoil, the induced velocity must 
increase from the front to rear of the disc, and 
hence the axial velocity u  will decrease from 
front to rear [ref. 2].”  

Glauert introduced an increment of the induced velocity 
proportional to the distance behind the center of the disk, 
hence 

v + v1
r

R
cosψ  

for the total, with an estimate of v1 = v . The resulting 
correction improved the prediction of the lateral shaft 
angle, but the correction was not sufficiently large (ref. 1). 

Energy losses 

In an appendix to reference 1, Glauert considered the 
energy losses of an autogyro in order to provide an 
independent check of the blade element results. 

“Two main sources of loss of energy are 
considered, due respectively to the induced 

velocity caused by the thrust and to the profile 
drag of the blades. An additional source of loss 
of energy is the periodic distribution of thrust 
over the disc of the windmill but no simple 
method has been found of estimating its 
magnitude [ref. 1].”  

The drag of the windmill is determined by DV = E , where 
E  is the rate of energy loss (power), and the drag-to-lift 
ratio is then D / L = E /VT  (assuming small incidence, so 
the lift is nearly the rotor thrust). 

“The thrust of the windmill causes an induced velocity v  
and a corresponding loss of energy Tv .” The induced drag 
term is then Di / L = CT / 2μ 2. 

The profile drag term is written 

Do /L = Eo /VT = σcd

8μCT

FP (μ)  

using a mean drag coefficient cd . The rotor drag-to-lift 
ratio D / L = Di / L + Do / L  follows. 

Profile power 

First considering just the blade section tangential velocity, 
Glauert wrote the energy loss due to the drag of the blades 
(ref. 1): 

E = B δcρ(Ωr + V sinψ)3 dr
0

R  

where 2δ = c d , and B  is the number of blades. Assuming 
a mean drag coefficient, the integration gives 
FP = 1+ 3μ 2. This result ignores the axial velocity and the 
blade section radial velocity. The effect of the former is 
small for small disk incidence, but the effect of the radial 
velocity is quite important. Thus, the profile energy loss is 

E = B δcρ (Ωr + V sinψ)2 + V 2 cos2 ψ{ }
3
2 dr

0

R  

averaged over the azimuth. Glauert evaluated this integral 
analytically (for μ < 1) at azimuth angles of ψ  = 0, 90, 
180, and 270 degrees, and the sum of these 4 integrals 
gave 

FP = 1+ nμ 2 = 1
2

(1+ 6μ 2 + μ 4 ) + 1
4

(2 + 5μ 2) 1+ μ 2

+ 3
8

μ 4 ln
1+μ 2 +1

1+μ 2 −1

 

  
 

  
. 

Evaluation of this integral gave n = 4.5 at low speed, and 
n = 6.13 at μ = 1. 

This result for the profile power was developed as a check 
of the blade element theory result, particularly at low disk 
incidence and high speed. Since the connection between 
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the two approaches is complex, the blade element theory 
form was viewed as the primary result by Glauert. That 
was unfortunate since the energy form was, in fact, more 
accurate and predicted better performance for the 
autogyro. 

Rotor lift-to-drag ratio 

A principal objective of Glauert’s work was to estimate 
the performance of the autogyro, particularly the rotor lift-
to-drag ratio. Glauert’s blade element approach predicted 
a maximum L / D = 5.9 (refs. 1–2) for a solidity of 
σ = 0.2  and mean drag coefficient δ = 0.0060 
( cd = 0.0120 ); or L / D = 6.5 for σ = 0.1. The energy 
approach gave a maximum L / D = 7.9 for σ = 0.2 , a 
result found only in the appendix of reference 1 and 
described as certainly overestimating the merit of the 
autogyro. Lock’s extension of the blade element approach 
to higher order in advance ratio (ref. 5) resolved this 
difference in L / D , confirming the energy method result. 
As summarized in reference 4, flight tests in 1927 implied 
an L / D  of about 5, performance considered comparable 
with the theory and inferior to an airplane. Wind tunnel 
tests showed a maximum L /D  of 7.5 to 8.0 . 

Cierva (ref. 6) gave experimental results of rotor-alone 
L /D  of about 10 for σ = 0.1 (and L / D = 12  with a small 
fixed wing). The RAE results could have been considered 
consistent with Cierva’s L / D  values, but Cierva 
remained focused on the initial blade element predictions 
of Glauert, and seemed unaware of either the energy 
method result or the summary provided in reference 4. 

The innovation 

Glauert’s results for the induced velocity and the profile 
power were very original. Interestingly, neither reference 
1 nor 2 cites any other publications. Glauert was perhaps 
in a unique position to make the connection between wing 
and propeller induced power, based on his work in both 
subjects (ref. 7). The profile power equation in the energy 
method was not derived. Perhaps Glauert saw this as an 
obvious extension of the axial flow result, but including 
the radial flow effect was an important insight. His 
approximate evaluation of the integral was clever. 

Between them, Glauert and Lock established many of the 
key concepts and even the notation of rotor 
aeromechanics. Glauert (ref. 1) introduced the concept of 
the tip-path plane and derived the expression for the mean 
lift coefficient: k L = 3Tc /σ  (or c  = 6CT /σ  in modern 
notation). He used β  for the blade flap angle (but not a 
Fourier series expansion), and σ = Bc / πR  for rotor 

solidity. Lock (ref. 5) described the equivalence of 
flapping and feathering and used a negative Fourier series 
for the flap motion (to become National Advisory 
Committee for Aeronautics (NACA) notation). He used 
μ = V cosi /ΩR  for the advance ratio. Lock introduced 
the parameter representing the ratio of aerodynamic and 
inertial forces on the blade, γ = ρacR4 / I1, which 
consequently bears his name (though differing by a factor 
of 2 from the U.S. definition, because of the different 
convention for lift coefficient). 

Cierva (ref. 8) estimated the rotor induced power using the 
fixed-wing expression, without the connection to a 
propeller for axial flow. He had the energy expression for 
profile power but was not able to evaluate the integral 
accurately. 

According to Brooks (ref. 9), Cierva put the first edition 
of his “Engineering Theory of the Autogiro” into final 
form with the technical assistance of Paul H. Stanley of 
Pitcairn. Cierva later (1934–1935) wrote “Theory of 
Stresses in Autogiro Rotor Blades.” While neither 
document was published, Brooks says they were widely 
read by rotary-wing designers. In the discussion after 
Cierva’s 1930 RAS lecture (ref. 6), Yeatman said that “he 
hoped that Senor de la Cierva would publish in the Journal 
his mathematical theory of the autogiro.” At his 1935 
RAS lecture (ref. 10), Cierva was “unable to reply 
definitely to Mr. Relf’s question as to whether he would 
be prepared to publish more of his work.” The works 
remained unpublished at Cierva’s death in 1936, although 
they were later edited by J.A.J. Bennett (ref. 8). 

Cierva, in 1930 (ref. 6), described his theory: 

“My engineering theories, all based on energy 
equations since 1924 and very similar in general 
lines to that developed later by Mr. C.N.H. Lock, 
and published by the Air Ministry in the R. & M. 
1127, in 1927 were not a useful guide to me 
until, in 1928, I succeeded in finding an 
analytical method of integrating the frictional 
losses of energy. ... The present results check 
with amazing accuracy the simple assumptions 
which form basis of my theory.” 

Likely reflecting the animosity from 1926, he cites Lock 
but not Glauert and was unaware, evidently, of Glauert’s 
better approximation for the profile power integral. 
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The conflict 

Glauert concluded the main text of reference 1 with: 

“Thus the principal merit of a gyroplane, its low 
landing speed, inevitably disappears when high 
speed of level flight is required, and there 
remains only the absence of a sudden stall to 
counter-balance the very poor efficiency as 
compared with an aeroplane.” 

After a consideration of the maximum design speed, he 
states in reference 2: 

“So it appears that for high speed aircraft a 
gyroplane will not land much slower than the 
corresponding aeroplane, while owing to its 
greater drag the top speed will be from 10 to 20 
m.p.h. lower. 

In light of these results, that a high speed 
gyroplane is slower than the corresponding 
aeroplane and is incapable of carrying out the 
characteristic slow landing associated with this 
type of aircraft, it would appear that the useful 
field of the gyroplane is confined to those cases 
where extreme high speed is not required. There 
are undoubtedly many cases where it is 
advantageous to sacrifice some degree of top 
speed and general efficiency in order to obtain 
ease of landing and safety from the danger of 
stalling, and it is in these cases that the autogyro 
system will find its most useful application.” 

And concludes the lecture with: 

“Improvement in the design of the windmill may 
lead to better results, but I believe that the 
gyroplane will always be slightly inferior to the 
aeroplane for top speed. On the other hand, the 
gyroplane has the very important advantages of a 
slower landing speed and of the absence of a 
sudden and violent stall.” 

Cierva sent a letter as his contribution to the discussion of 
Glauert’s 1927 RAS lecture, excusing “himself from 
coming to speak in person on the grounds of his difficulty 
in speaking English” (ref. 2). In this letter, Cierva objected 
strongly to Glauert’s results and conclusions. Early in the 
discussion, Handley Page remarked on the “extraordinary 
divergence of opinion among the experts,” and expressed 
the desire for “some actual measured data.” He also said: 
“When that next paper comes I hope it will be a paper 
from Senor de la Cierva, but I suppose it will be replied to 
by a letter from Mr. Glauert, who will be unable to be 
present.”

Respect for the autogyro and its inventor was not 
diminished by the conflict, and the RAS invited Cierva to 
present lectures in 1930 and 1935. Neither Glauert nor 
Lock, however, were present at the 1930 lecture. Glauert 
was no longer working on autogyros or airscrews at that 
time—his last papers on the subjects appearing in 1928—
perhaps because he became Head of the Aerodynamics 
Department at Farnborough. Lock though continued 
publishing in the field into the late 1940s. 

Cierva’s letter said: 

“In the first place I must, with respect, record my 
protest against the manner in which Mr. Glauert 
has made assertions in an almost axiomatic form, 
from which the evident conclusion must be 
drawn that the autogyro is, in effect, useless. 
Such assertions are based only on very 
incomplete and uncertain calculations which I am 
able to state are not at all in agreement with the 
experimental results. 

I disagree with almost every point contained in 
Mr. Glauert’s developments, which in any case 
are wrong both in principle and in conclusions, 
and also in many details. This observation does 
not involve any personal criticism of such an 
eminent mathematician, whose mistake is, I 
believe, that he has tried to treat in too simple 
and theoretical a manner, a most complicated and 
novel aerodynamical problem, and that he has 
considered his conclusions as proved when he 
might well have waited for the shortly 
forthcoming tests to tell us the truth.” 

Glauert replied to the discussion: “I hope, however, that I 
have not given the impression that the autogyro is 
“useless.” I believe that it is less economical than an 
aeroplane, but that it has very considerable advantages as 
regards safety and ease of landing.” And there would 
seem to be common ground with Cierva’s remark: “The 
autogyro will have performance at least as good as, and 
possibly better than, the aeroplane, since lift/drag is not 
the sole criterion of performance.” However, there was 
direct disagreement regarding the values of lift-to-drag 
ratio and vertical rate of descent, Glauert’s estimate of the 
performance being significantly less than Cierva’s 
statements, and Cierva could not have appreciated the 
treatment of maximum speed capability. 

At the time, Glauert had wind tunnel and drop test data to 
support his analysis, while Cierva had not yet produced 
quantitative flight test results. From today’s perspective, 
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Glauert’s analysis is considered optimistic. Cierva was 
likely most concerned about the possible impact of 
Glauert's results on his continued development of the 
autogyro, for he concluded his letter with a remark on “the 
risk of mistake which is necessarily involved in trying 
to limit from the beginning the possibilities and 
improvements of any new system.” 

When Cierva returned to the RAS in February 1930 
(ref. 6), he described the autogyro in terms very similar to 
Glauert’s: 

“The autogiros lately produced have not better 
performance than the equivalent conventional 
aeroplanes. In fact, they have a little less speed 
and a little less climb than the best equivalent 
aeroplanes. Nevertheless, they are better flying 
machines. If they fall a little short of the best 
aeroplanes in that rather vague quality which is 
called “performances,” they have a performance 
of their own, which is utility and safety.” 

There should have been common ground with the RAE in 
both quantitative and qualitative assessment of the 
autogyro. Their estimates of performance were close by 
this time. Yet the animosity was still evident in Cierva’s 
remarks regarding the conservative estimate of L /D  by 
“both eminent mathematicians and experimenters” and the 
inability of “certain theorists” to see any physical 
possibility of the vertical rate of descent being 
significantly less than that of a parachute. In a brief 
description of his theory, Cierva cited only Lock, not 
Glauert. Based on reference 8, Cierva apprently remained 
unaware of Glauert’s elegant expressions for induced and 
profile power. 

Exacerbating the animosity was the disagreement 
regarding vertical descent rate in autorotation. In this case, 
the Englishmen started the argument. They were right, but 
the topic was not central to a discussion of autogyro 
performance. Evidently the subject had come up during 
the demonstration flights, so following Cierva’s October 
1925 lecture (ref. 3) Lock opened the discussion with: 

“What would be the actual velocity of descent in 
a very steep glide? Would it be possible for 
machine to descend absolutely vertically at a safe 
speed? … Whether you anticipate that the 
resistance of the Autogyro, in falling vertically, 
would be very much greater than that of a 
parachute of area equal to the disc area of the 
Autogyro, since a simple calculation indicates 
that a parachute having the same area and loading 

as the Autogyro would fall at a velocity of 
between 30 and 40 feet per second.” 

Phrased as questions, this stated a position based on the 
experience since 1922 of Lock, Glauert, and others at the 
RAE and NPL, with propellers in axial flow, including 
autorotation. In reply, Cierva stated that the vertical 
descent rate of the C.6A was 3–4 m/sec (10–13 ft/sec) for 
a disk loading of about 9.5 kg/m2 (1.9 lb/ft2). Glauert 
finished his 1927 paper with a paragraph on “the 
possibility of vertical descent of a gyroplane.” Based on 
empirical results (wind tunnel experiments and dropping 
tests) he gave 25 T / A  as the velocity of steady descent 
of a windmill, which means a rate of descent of 35 ft/sec 
for T / A = 2 lb/ft2 (a modern result is 26.2 T / A ; see 
reference 11). Thus, Glauert concluded: “I see no reason 
for believing that the rate of descent of a full scale 
windmill can be appreciably less than this value, and so I 
do not believe that it would be safe for a gyroplane to 
descend vertically to the ground for any considerable 
height in still air.” Cierva’s contribution to the discussion 
of the paper included: “The rate of descent in a practically 
vertical path from some 500 feet was found in repeated 
official tests to be some 50 per cent of that allowed by Mr. 
Glauert.” Glauert, in reply to the discussion, allowed that 
an exaggerated importance had been attached to the 
question but only after reiterating, “I cannot reconcile this 
slow rate of descent with the fundamental laws of motion, 
nor can I believe in so tremendous a scale effect as would 
be required to increase the drag coefficient of the windmill 
four times.” In their 1928 summary of autogyro work 
(ref. 4), Glauert and Lock stated that “the only point 
which remains uncertain is the capacity of a gyroplane to 
descend vertically at a low speed, but the practical 
importance of this question should not be exaggerated.” 
Drop tests were consistent with results for airscrews, so 
the vertical rate of descent was expected to be double that 
recorded. Cierva devoted a large part of his 1930 lecture 
(ref. 6) to vertical descent. He stated that 13–15 ft/sec was 
“obtained now and again in free descent,” compared to 
12–13 ft/sec descent at 45 degrees. He attributed the 
discrepancy between full-scale results and models to stall 
on the inboard part of the blades, and described a theory 
that expansion of the wake could explain how the rotor 
could actuate on a much greater mass of air. In the 
discussion (ref. 6), McKinnon Wood of RAE stated that 
the apparent parachutal coefficient was improbable and 
disagreed with the wake explanation presented. 
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Inflow curve 

One thing the RAE group did not get right was the 
presentation of inflow curve—the momentum theory 
solution for the induced power as a function of axial 
velocity—and its extension into the vortex ring and 
turbulent brake states. Writing the loading distribution 
as dT /dr = 4πrρ(V + v)2 F = 4πrρV 2 f , they plotted 
1/ f = (V / vh )2  as a function of 1 /F = ((V + v) /vh )2  
(refs. 12–13), as shown in figure 3. This form is 
unfavorable because using squares hides the sign of V  
and (V + v) , and hides the slope of the curve at hover. The 
more useful forms were introduced in 1947: v  as a 
function of V  from Hafner (fig. 4, ref. 15) and (V + v)  as 
a function of V  from Lock (fig. 5, ref. 16). As Lock 
described (ref. 16): 

“On reading Dr. Hislop's paper on experiments 
on a Hoverfly I aircraft which reproduces the 
‘characteristic’ curve of an airscrew as given in 
R. & M. 1026, and on re-reading the latter report 
and R. & M. 1014 after an interval of twenty 
years, it occurred to me that a modification of the 
method of plotting adopted in these reports 
would have certain advantages. 

The change of variable has three advantages, 
1. The three principal working states now 
correspond to three different quadrants. … 
2. The representation in the neighbourhood of the 
x-axis (static condition) and the y-axis (ideal 
gyroplane descending) is more definite since the 
curve has a finite slope at both these points. 
3. The formulae of the 'Vortex theory' take the 
simple form …” 

Although his report was dated earlier, Lock cited Hafner’s 
conference paper. 

 

Figure 3. Axial inflow curve, RAE’s form (ref. 14). 

 

Figure 4. Axial inflow curve, Hafner’s form (ref. 15). 

 

Figure 5. Axial inflow curve, Lock’s form (ref. 16). 

Profile power function 

The profile power function FP (μ,μ z )  has an interesting 
history. This function accounts for the influence of 
edgewise and axial rotor velocity on the profile power 
coefficient: CPo = (σcd /8)FP . Including radial flow, axial 
flow, and reverse flow, the function is 

FP = 4 (uT
2 + uR

2 + uP
2 )3 / 2 dr

0

1  

(an average over the azimuth is also performed). Glauert’s 
approximate expression for FP (μ)  (axial flow excluded) 
has an error of less than 1% up to μ =1.9, but this result 
has been largely ignored—even by Lock and those who 
built on the work of Glauert and Lock. Glauert suggested 
the form FP = 1+ nμ 2, but then showed that to match the 
exact result, the coefficient varies from n = 4.5 at μ = 0 to 
n = 6.13 at μ =1. Cierva, by an approximate integration, 
obtained FP = 1+ 4μ 2 + μ 4  (ref. 8), which has an error 
less than 1% only up to μ = 0.15, and 4% up to μ = 0.3. 
The work that followed Glauert built on blade element 
theory rather than the energy method, and hence omitted 
the radial flow effects. Without either radial flow or 
reverse flow, 
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FP = 4 uT
3 dr = 1+ 3μ 2 . 

Including reverse flow gives FP = 1+ 3μ 2 + 3
8

μ 4 . 

What I first encountered in class was FP = 1+ 4.6μ 2, 
which has its origin in Bennett’s work (ref. 17). Bennett, 
who was the chief engineer at the Cierva Autogiro 
Company in 1940, developed an expansion of FP  for 
small μ , and found that the expansion was fit well by 
n = 4.65; but the expansion is not accurate for large μ , 
having an error less than 1% up to μ = 0.35, and 4% up to 
μ = 0.5. Bennett cites Glauert (ref. 1), but like Cierva 
(ref. 6) prefers Lock’s work (ref. 5). Lock reconciled the 
blade element and energy results, but with the 
assumptions that lead to FP = 1+ 3μ 2. Bennett evidently 
obtained 

FP = 4 (uT
2 + uR

2 )3 / 2 dr  

from Cierva and did not look at the Appendix of reference 
1 that gave Glauert’s approximate integration. 

For reference 11, I fit numerically integrated results to 
FP = 1+ 4.5μ 2 +1.61μ 3.7 , which has an error of less than 
1% up to μ =1.4. Harris worked on the problem for 
nearly 45 years (ref. 18). With the help of mathematics 
software, Harris developed an approximation valid to 1% 
over the full range of μ  and μ z : 

 

FP ≅ 1+ V 2 1+ 5
2

V 2 + 3
8

μ 2 4 +7V 2 +4V 4

(1+V 2 )2 − 9
16

μ 4

1+V 2

 
 
  

 
 

+ 3
2

μz
4 + 3

2
μz

2μ 2 + 9
16

μ 4( )ln 1+V 2 +1
V

 
  

 
  

 

with V 2 = μ 2 + μz
2  (ref. 19). This expression is exact for 

axial flow ( μ = 0). Figure 6 compares the various 
expressions for FP (μ) . At the scale shown, the 
approximations of Glauert and Harris are 
indistinguishable from the numerical integration line. 

After Glauert 

In the decades following Glauert’s work, development of 
the basic analysis of autogyro and helicopter rotors 
progressed in a series of steps built on the foundation 
provided by Glauert. Glauert considered a flapping rotor 
with no twist, constant chord, no hinge offset, and no 
cyclic pitch; small angle aerodynamics with constant lift-
curve slope and mean drag coefficient. The rotor loads 
and flapping (coning and first harmonic) were obtained 
with only first order terms in advance ratio retained. 

Lock (1927, ref. 5) extended Glauert’s analysis by 
including higher powers of advance ratio, second 
harmonic flapping, and cyclic pitch. He showed the 
equivalence of no-feathering plane and tip-path plane 
analyses, and the equivalence of the blade element theory 
and energy method results for power (though neglecting 
radial flow and reverse flow). 

Wheatley (1934, ref. 20) extended the theory of Glauert 
and Lock and evaluated the accuracy of the theory by 
comparing it with test results. He considered a flapping 
rotor with no hinge offset; linear twist, constant chord 
blades; the tip loss factor and linear induced velocity 
variation. Wheatley included reverse flow (accounting for 
the sign of lift and drag in the reverse flow region) but still 
with small angle aerodynamics, and he neglected radial 
flow and radial drag effects in the profile losses. The 
calculations were compared with test data for the Pitcairn 
autogyro. The comparison was generally good up to about 
μ = 0.5. A significant discrepancy occurred in the 
calculation of lateral flapping, which was typically 
1.5 degrees low in magnitude. Including an estimate of the 
longitudinal inflow gradient reduced the error to about 
1.0 degree. Wheatley considered the likely source of this 
discrepancy to be the simple induced velocity variation 
used. 

Sissingh (1939, ref. 21) extended Wheatley’s analysis, 
considering a flap hinge offset and eliminating the 
assumption of a constant (mean) drag coefficient by using 
a general drag polar of the form cd = δ0 +δ1α +δ2α

2. 
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Figure 6. Profile power function. 



10 

Bailey (1941, ref. 22) put Wheatley’s analysis in practical 
form for routine use by expressing all quantities as direct 
functions of the blade collective pitch, twist, and no-
feathering-plane inflow ratio. The coefficients of these 
expressions are a function of advance ratio, the Lock 
number, and the tip loss factor. Bailey considered a 
flapping rotor with linearly twisted, constant chord blades, 
and a drag polar cd = δ0 +δ1α +δ2α

2. The aerodynamic 
model still neglected the radial drag, assumed small angles 
to evaluate the angle of attack, and used a constant lift-
curve slope, c = aα . Bailey presented a solution 
procedure for the rotor performance (iterative for 
helicopter rotors, but for autogyros, solving CQ = 0 
directly for the inflow ratio). 

Castles and New (1952, ref. 23) extended the theory of 
Wheatley and Bailey to large angles of pitch and inflow. 
They represented the section aerodynamic coefficients as 

c  = a sin α  and cd = ε0 + ε1 sinα + ε2 cos α ; substituted 
trigonometric expansions of sinα = sin(θ −φ)  and 
cosα = cos(θ −φ); and used large angle expressions for 
sinφ  and cosφ . They considered an articulated blade 
with arbitrary twist and chord distributions, and root 
cutout. A linear inflow distribution was used. 

Gessow and Crim (1952, ref. 24) also extended the theory 
of Wheatley and Bailey to large pitch and inflow angles, 
for a linearly twisted, constant chord blade. The angle of 
attack α =θ −φ  was still assumed to be small. Reverse 
flow aerodynamics were approximated by using stalled 
values of lift and drag coefficients. 

Gessow and Crim (1955, ref. 25) developed the equations 
and a solution procedure for the numerical integration of 
the transient flap motion. They considered an articulated 
rotor with offset flapping hinge (or a teetering rotor); large 
angles of flapping, inflow, and pitch; and general airfoil 
characteristics (lift and drag coefficients as function of 
angle of attack and Mach number). The solution was 
obtained by numerical integration using a digital 
computer. The analysis was developed for investigations 
of the flap dynamic stability (from the transient motion) 
and rotor performance (from the converged periodic 
solution). By using numerical integration, general 
aerodynamic characteristics could be considered, 
including stall, compressibility, and reverse flow 
(assuming that the required airfoil characteristics were 
available). 

Gessow (1956, ref. 26) further developed the equations 
for numerical calculation of the aerodynamic 
characteristics of rotors in a form intended for digital 
computer applications. The model included arbitrary blade 
twist, chord, and mass distribution; general two-

dimensional aerodynamic coefficients for the blade airfoil; 
and large angles of pitch and inflow. The blade flap angle 
was assumed to be small and radial flow effects were still 
neglected. The solution procedure solved the flap equation 
of motion directly for the harmonics of the blade motion. 

Table 2 summarizes the key developments after Glauert. 
This series of analytical developments was accompanied 
by a shift of the work from Britain (RAE and NPL) to the 
United States (NACA), and from autogyros to helicopters. 
The progression from Glauert was clear up to the 
introduction of the digital computer, which changed the 
way problems would be formulated and solved. 

TABLE 2. ANALYSIS DEVELOPMENT BUILDING 
ON GLAUERT’S ACHIEVEMENTS 

1927 Lock (ref. 5) higher powers μ , cyclic 

pitch 

1934 Wheatley (ref. 20) twist, tip loss, reverse flow, 

compare with test 

1939 Sissingh (ref. 21) cd = δ0 +δ1α +δ2α
2 

1941 Bailey (ref. 22) cd = δ0 +δ1α +δ2α
2, 

tabulated coefficients 

1952 Castles and New 

(ref. 23) 

large pitch and inflow, 

arbitrary twist and chord 

1952 Gessow and Crim 

(ref. 24) 

large pitch and inflow 

angles, reverse flow, stall 

1955 Gessow and Crim 

(ref. 25) 

DIGITAL COMPUTER 

offset hinge, airfoil tables, 

large angles 

1956 Gessow (ref. 26) DIGITAL COMPUTER 

arbitrary twist and chord, 

large pitch and inflow, 2D 

airfoil characteristics 

 

GROUND RESONANCE 

 
The analysis of ground resonance was developed by 
Coleman of NACA (ref. 27). According to the forward of 
reference 28: 

“During the early part of World War II, some of 
the helicopters designed for military use were 
observed during ground tests to exhibit a violent 
oscillatory rotor instability which endangered the 
safety of the aircraft. This instability was at first 
attributed to rotor-blade flutter, but a careful 
analysis indicated it to be caused by a hitherto 
unknown phenomenon in which the rotational 
energy of the rotor was converted into oscillatory 
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energy of the blades. This phenomenon was 
usually critical when the helicopter was operating 
on or near the ground and, hence, was called 
ground resonance. An oscillatory instability of 
such magnitude as resulted from this 
phenomenon would generate forces that could 
quickly destroy a helicopter. The research efforts 
of the National Advisory Committee for 
Aeronautics were therefore enlisted to investigate 
the difficulties introduced by this phenomenon. 
During the interval between 1942 and 1947, a 
theory of the self-excited instability of hinged 
rotor blades was worked out by Robert P. 
Coleman and Arnold M. Feingold at the Langley 
Aeronautic Laboratory. This theory defined the 
important parameters and provided design 
information which made it possible to eliminate 
this type of instability.” 

The original reports (refs. 27, 29, 30) were combined into 
a single volume (ref. 31) by George W. Brooks, who also 
contributed an appendix. The combined volume was 
reissued as an NACA Report (ref. 28). 

Ground resonance involves the coupled airframe inplane 
hub motion and blade lag motion, specifically the 
regressive lag mode of an articulated or soft-inplane rotor 
(lag frequency less than 1/rev). Insufficient damping of 
either the airframe motion or the lag motion can lead to a 
mechanical instability at rotor speeds near the resonance 
of an airframe mode and the regressive lag mode 
frequencies. For articulated rotors the physics of the 
instability are simple, typically involving neither 
aerodynamics nor other blade degrees of freedom. For 
soft-inplane hingeless or bearingless rotors (with higher 
lag frequency than articulated rotors), the flap motion can 
be important, contributing to both stiffness and damping 
(through aerodynamics) of the airframe modes; and the 
phenomenon can occur in flight as well as on the ground, 
then being called “air resonance.” 

Ground resonance was a problem encountered by a 
number of autogyros (ref. 32). Reference 33, in discussing 
resonance possibilities, remarks: “An unpleasant, and at 
times dangerous vibration has been experienced in various 
rotor aircraft while on the ground with the rotor turning. 
These disturbances have all been identified as ground 
resonance.” Gregory (ref. 34) describes several accidents 
with the Kellett YG-1 autogyro during 1936, clearly 
ground resonance but at the time attributed to pilot error. 
When the YG-1 rotor destroyed itself in the NACA 
Langley full-scale wind tunnel, the problem was 
recognized as an inherent instability of the aircraft. 

Gustafson (ref. 35) mentions the 1937 accident in the 
NACA wind tunnel, but records that “the studies of 
[Coleman] were originally inspired by industry test 
experience for an advanced autogiro” (ref. 36). Brooks 
(ref. 9) describes the 1941 Kellett XR-2 development: 

“The accident to XR-2 proved to be important to 
the whole development of rotary wings. During 
one of the first tests of a jump take-off, ground 
resonance set in at high rotor speed. This built up 
so rapidly that the aircraft broke up before 
anything could be done to stop it. In less than 
five seconds, the rotor pylon support structure 
collapsed and the fuselage broke in two places, 
between the engine and pylon and pylon and tail. 
This dramatic further demonstration of a problem 
that had recurred repeatedly throughout the 
development of rotary-wing aircraft had an 
important effect in influencing the United States 
Army Air Force, the NACA and Kellett into 
tackling the basic problem of ground resonance. 
Bob Wagner of Kellett and Prewitt Coleman of 
NACA came up independently with 
mathematical solutions for the proper 
configuration and for damping to prevent ground 
resonance. This was a major step in the 
development of rotary-wing aircraft. Paul Stanley 
of the Autogiro Company of America had also 
arrived at mathematical and engineering 
solutions to the problem with the result that 
Pitcairn Autogiros are claimed to have largely 
avoided ground resonance.” 

Coleman’s 1943 report (ref. 27) was a corrected version of 
a July 1942 Advance Restricted Report (ARR) of the same 
title. Coleman acknowledges Wagner (ref. 27): 

“An alternative derivation of the characteristic 
equation for the whirling speeds of a three-blade 
rotor has been given by Wagner of the Kellett 
Autogiro Corporation. By considering only the 
case of a pylon having equal stiffness in all 
directions of deflection, Wagner has shortened 
the analysis by considering directly the 
equilibrium of forces and moments under 
conditions of steady circular whirling. Some 
examples of the dependence of whirling speed 
upon rotational speed are given, and the formula 
for the shaft-critical speed is obtained.” 

Wagner (ref. 37) cites first Coleman (the ARR of July 
1942) and his own 1942 Kellett Autogiro Corp reports, 
and then credits Coleman (ref. 27) for the general theory. 
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Figure 7. Simplified mechanical system representing 
rotor (ref. 27). 

 

Coleman (ref. 27) developed the theory of ground 
resonance stability for rotors with three or more blades 
(fig. 7), on symmetric or asymmetric support, including 
the effects of damping. “Of the large number of degrees of 
freedom of a hinged rotor, the important ones for the 
present problem have been found to be hinge deflection of 
the blades in the plane of rotation and horizontal 
deflections of the pylon. Other degrees of freedom, such 
as the flapping hinge motion of the blades, the bending or 
torsion of the blades, and the torsion of the drive shaft, are 
considered unimportant in the problem of self-excited 
oscillations.” By using “special linear combinations of the 
hinge deflections” in the fixed-reference frame (equivalent 
to multiblade coordinates), equations with constant 
coefficients were obtained, and only the first-harmonic 
coordinates of the lag motion were coupled with the pylon 
motion. “The physical meaning of this partial separation 
of variables is that … involves a motion of the common 
center of mass of the blades and, thus, a coupling effect 
with the pylon.” Introducing these new coordinates was a 
crucial step, enabling a practical mathematical solution for 
ground resonance stability. Complex combinations of the 
pylon degrees of freedom and the lag-hinge degrees of 
freedom reduced the number of equations from four to 
two. The case of no damping reduces to a single equation 
that is a quadratic function of the rotor speed, for an 
assumed value of the whirl frequency (eigenvalue). The 
resulting plot of lag and body mode frequencies as a 
function of rotor speed is the Coleman diagram (fig. 8), in 
which the absence of a solution at a rotor speed indicates 
instability. Coleman presented a method for finding the 
stability boundary in the presence of damping, by 

assuming purely imaginary eigenvalue and plotting the 
solutions of the real and imaginary parts of the 
characteristic equation (fig. 9). The solutions of the real 
and imaginary parts intersect at the stability boundary. 

Feingold and Coleman (refs. 29–30) extended the analysis 
for two-bladed rotors. In addition to the ground resonance 
instability, the shaft-critical vibration (1/rev lag frequency 
resonance, potentially unstable for rotors with only two 
blades) was examined. For symmetric support, the ground 
resonance equations for a two-bladed rotor can be 
analyzed in the rotating frame with constant coefficients. 
For the case of anisotropic support (ref. 30), “the 
mathematical  treatment  of this case is  considerably more 

 

 

Figure 8. Coleman diagram: whirl frequency for neutral 
stability as a function of rotor speed, zero damping 
(ref. 38). 

 

Figure 9. Solution of real and imaginary equations of 
ground resonance, for articulated rotor (lag frequency 
νζ

2 = 0.22 + (0.265Ω)2 ) on symmetric support; 
frequency (in fixed system) as a function of rotor 
speed, both normalized by the support frequency 
(ref. 27). 
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complicated than the other cases because of the 
occurrence of differential equations with periodic 
coefficients. The characteristic frequencies are obtained 
from an infinite-order determinant.” A consequence of the 
periodic coefficients is “the existence of an infinite 
number of instability ranges which occurred at low rotor 
speeds.” 

Deutsch (ref. 38) discussed ground resonance “with 
emphasis on practical considerations.” This paper was a 
summary of his work since the early 1940s. He started 
from Coleman’s draft ARR of July 1942, and extended it 
for anisotropic supports (ref. 39). Based on Coleman’s 
analysis (ref. 27), “the results are stated in terms of simple 
formulas for the center of the range of instability, the 
critical speeds for resonance, and the damping required 
for the elimination of the range of instability.” Deutsch 
obtained the simple result that at the rotor speed for 
resonance, Ω = ωx /(1− νζ ), the damping required for 
stability is (in modern notation) 

Cζ Cx > ωx
2 N

2

1− νζ

νζ
Sζ

2  

for isotropic support, and half that value for anisotropic 
support. Here Cζ  and Cx  are the lag hinge and support 
damping, respectively; ωx  is the support mode frequency; 
N  is the number of blades; νζ  is the lag mode frequency 
(per rev); and Sζ  is the first moment of inertia of the 
blade about the lag hinge. Deutsch concluded with a 
discussion of “practical considerations in the design of the 
landing gear and blade dampers,” including friction, 
viscous and hydraulic dampers, and recommendations for 
test procedures. 

Henrich Focke (ref. 40) described the phenomenon of 
ground resonance and discussed dealing with the problem 
as part of the development of the F61. At Focke’s plant, 
his team investigated the problem analytically and, to 
prove that the air forces are negligible, conducted a full-
scale test with circular steel arms replacing the rotor 
blades. No theoretical development is presented, but 
figure 10 (figure 15 of reference 40) makes it clear that 
the analysis was well developed. Evidently Focke was not 
aware of other ground resonance incidents and 
investigations, for reference 40 states: “We asked 
ourselves, why this oscillation never appeared on any of 
the numerous rotary-wing vehicles tested worldwide so 
far and why it was analytically investigated by his team 
for the first time” (translation by Berend van der Wall). 
The work by Focke’s team on ground resonance must 
have occurred well before 1943 (the date of reference 40), 
but the theory was not published then or since. 
Enigmatically, a sketch similar to figure 10 occurs, 

 

 

Figure 10. Rotor head and blade oscillation frequency 
diagram (ref. 40). 

 
without discussion, in the notes of  Prewitt’s interview of 
Hohenemser  (then with Flettner) in the summer of 1945 
(ref. 41). It was Coleman’s work that provided the 
foundation for future engineering treatment of ground 
resonance on helicopters. 

AEROMECHANICS BOOKS 

 
A large number of books on helicopter aeromechanics 
have been published since the 1940s. The most notable of 
these is “The Aerodynamics of the Helicopter” by Alfred 
Gessow and Garry C. Myers, Jr. (ref. 42). It was one of 
the first expositions of helicopter engineering, although 
preceded by Nikolsky’s book (ref. 43) and a couple of 
others. As stated in the preface: 

“This book was written as a text for senior and 
graduate engineering students and engineers in 
the helicopter industry who are interested in 
obtaining a more thorough understanding of the 
rudiments of helicopter aerodynamics. … The 
vast background of experimental and theoretical 
rotor work (comprising over seventy published 
papers) done by the NACA during the past 
fifteen years, served as a sound basis for the 
aerodynamic material developed in the book.” 

There are several reasons for the lasting value of this book 
by Gessow and Myers: it is a report of the excellent 
NACA research on autogyros and helicopters; it is a 
concise introduction to helicopter aerodynamics (343 
pages and only 1/2-inch thick in the original format); and 
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it has been continuously in print, first from The 
Macmillan Company (1952), then from Frederick Unger 
Publishing Co. (1967), and today from College Park Press 
(1999). 

In his review of the book upon its publication in England 
(ref. 44), Bennett wrote: 

“The two authors, having had a background of 
experience in helicopter work at Langley Field, 
are well qualified to present an abridged version 
of N.A.C.A. literature on the subject. The 
physical principles are discussed with the utmost 
clarity, lengthy mathematical derivations being 
omitted. … The textbook is a great contribution 
to helicopter literature and is recommended to all 
who are interested in the physical principles of 
rotary-wing aircraft and in the fundamentals of 
helicopter aerodynamics.” 

UNSTEADY AERODYNAMICS 

 
The extension of wing unsteady aerodynamic theory to a 
rotor blade was accomplished by Loewy (ref. 45). After 
blade load problems were encountered on the Hughes XH-
17 Sky Crane, the Cornell Aeronautical Laboratory (CAL) 
conducted a research program involving vibratory rotor 
blade bending (refs. 46–47). In research at CAL on rotor 
blade flutter, good predictions of test results were 
achieved except at low collective, where measured 
frequency and damping were not predicted using either 
quasistatic or unsteady airfoil theory. Robert G. Loewy 
was at CAL during 1949–1952 and 1954–1957. While 
getting a master’s degree at Massachusetts Institute of 
Technology (MIT) in 1948, working with Rene Miller, 
Loewy had taken classes in rotorcraft and in Theodorsen’s 
unsteady airfoil theory, so he was well prepared to 
undertake an analysis of rotor blade unsteady 
aerodynamics. 

Loewy chose to focus initially on “taking into 
consideration the influence of vorticity which has been 
shed and blown below the rotor disc and which must be 
passed over by succeeding blades and/or in succeeding 
revolutions,” leaving three-dimensional aspects of the 
aerodynamics to future work. Thus, (ref. 45): 

“A two-dimensionalized model is postulated for 
the representation of the aerodynamics of an 
oscillating rotary wing airfoil operating at low 
inflow; forward speed effects are neglected. The 
resulting unsteady integral downwash equation 
leads to an equation for pressure distribution 

identical in form to that of classical fixed-wing 
flutter, but with a modified lift deficiency 
function. … Theodorsen’s function of reduced 
frequency, C(k) , is modified to include the 
effects of the number of blades in the rotor, the 
ratio of oscillatory frequency to rotational 
frequency, and the inflow ratio. … These effects 
(1) reduce the flap damping significantly at 
integer values of the ratio of oscillatory 
frequency to rotational frequency, and (2) make 
single degree of freedom pitch instability 
possible.” 

The development of the two-dimensional model of the 
wake of a rotor hovering or in vertical flight is illustrated 
in figure 11. When the inflow “is very small, all the sheets 
of shed vorticity tend to pile up on each other, and the 
effect of that vorticity close to the blade in question (shed 
by the several previous blades and/or in the several 
previous revolutions) is of more importance than that 
which exists beyond a still smaller azimuth angle on either 
side of the blade” (fig. 11(a) B). This “condition certainly 
occurs at blade-pitch angles near zero and is of prime 
importance in ‘wake-flutter’.” Then “in arriving at a 
model which is mathematically tractable, the assumption 
has been made that for the case of low inflows, only the 
vorticity contained within a small double azimuth angle 
straddling the blade is of real consequence” (fig. 11(b) a), 
so “the azimuthal angularity of shed vorticity with respect 
to the blade may be ignored,” and the wake sheets 
extended to infinity. The result is “a two-dimensional 
model of unsteady rotor aerodynamics for a single-bladed 
rotor operating at low inflows” (fig. 11(b) b), extended to 
multibladed rotors as shown in figure 11(c). 

Following classical unsteady aerodynamic analysis of thin 
airfoils, the sole influence of the returning wake sheets is 
the Loewy lift deficiency function: 

′ C (k,m,h) = H1
(2)(k) + 2J1(k)W (kh,m)

H1
(2) (k) + iH0

(2)(k) + 2 J1(k) + iJ0 (k)[ ]W (kh,m)

 
a very pretty result. Here h  is the vertical distance 
between successive rows of vorticity (fraction semi-
chord), k  is the reduced frequency, and the frequency 
ratio is m = ω /Ω (fraction rotor speed Ω; only the non-
integer part of m is of consequence). 

Loewy examined the implications of this lift deficiency 
function on blade pitch and flap damping. If the pitch axis 
is not at the quarter chord, “negative damping can exist 
when the oscillatory frequencies are certain close-to-
integer multiples of the rotor speed.” Moreover, “flap-
damping can go to very low (but positive) values at 
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integer values of the frequency ratio,” implying large 
resonant amplification factors. 

Loewy’s work formed the starting point for further 
development of unsteady aerodynamic theory for rotor 
blades, in particular, extensions to include trailed wake as 
well as shed wake, and forward flight as well as axial 
flow. With the shift of attention from frequency-domain to 
time-domain aerodynamic models, Loewy’s function 
remains a crucial test case for all new theories. 

 

(a) Schematic representation of unsteady rotor flow fields. 

 

 

(b) Two-dimensional models of unsteady rotor flow. 

 

 

(c) Aerodynamic model for a multibladed rotor. 

Figure 11. Loewy’s development of two-dimensional 
model for influence of returning shed wake (ref. 45). 

Similar unsteady aerodynamic theories were developed by 
Timmen and van de Vooren (ref. 48), and by Jones 
(ref. 49). Loewy’s work was conducted during 1955 at 
CAL and presented at the IAS Annual Meeting in January 
1956. The CAL work on rotor flutter was part of the 
motivation of both references 48 and 49. Timman and van 
de Vooren (ref. 48) considered the limit of no vertical 
convection, with all shed sheets in the plane of the airfoil. 
They performed two degree-of-freedom flutter 
calculations, including comparisons with experiment. 
They submitted the paper to the Journal of Aeronautical 
Sciences in June 1956, citing an Nationaal 
Luchtvaartlaboratorium of The Netherlands (N.L.L.) 
report of 1956 by Timman, and remark: “Since this paper 
was submitted, the authors have become aware of R. G. 
Loewy’s solution of the same problem by a different 
analysis [ref. 45]. Loewy’s results for the aerodynamic 
forces when h = 0 (no flow through the rotor plane) agree 
completely with ours.” In the paper by Jones (ref. 49) “an 
approximate theory is described which takes into account 
the influence of the wake on the aerodynamic derivatives 
of an oscillating rotor blade.” Jones considered the same 
two-dimensional aerodynamic model as Loewy, but did 
not quite obtain Loewy’s pretty result for the lift 
deficiency function. Jones submitted the paper to the 
Journal of Aeronautical Sciences in October 1957, and 
remarked: “The material in this paper is based on a report 
submitted to the Department of Scientific and Industrial 
Research in June 1954, which was later extended and 
circulated as A.R.C. Report 18,173, in January 1956.” 

Loewy’s aerodynamic theory was verified experimentally 
through tests at CAL (refs. 50–51), at MIT (ref. 52), and 
at NACA Langley Research Center (ref. 53). 

Daughaday, DuWaldt, and Gates (refs. 50–51) conducted 
a test of a one-bladed, teetering model rotor, varying the 
mass characteristics, pitch spring, and pitch-flap coupling. 
Using excitation through a moment at the flap hinge, 
forced response was measured and damping obtained from 
the free decay. For the damping of the first bending mode 
in hover, a reduction of damping ratio when the frequency 
was near 3/rev was observed experimentally and predicted 
using Loewy’s theory (fig. 12). This wake effect was 
significant at zero collective, but reduced for 4 degrees 
collective. The second bending mode damping was 
reduced near 7/rev and 8/rev. Pitch-flap flutter was 
investigated for a two-bladed rotor with 63.4 degrees of 
pitch-flap coupling, varying rotor speed and blade 
chordwise center-of-gravity position. A stabilizing effect 
of the returning wake was observed for pitch mode 
frequency near 2/rev, and predicted using Loewy’s theory 
(fig. 13). 
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Figure 12. Bending mode damping (ref. 51). 

 

Figure 13. Pitch-flap flutter (ref. 51). 

 

Figure 14. Flap response to vertical hub excitation  
(ref. 52). 

 

 

Figure 15. Damping of second (top) and third (bottom) 
flap bending modes (ref. 53). 

 

Ham, Moser, and Zvara (ref. 52) measured blade flap 
response to collective pitch and to vertical hub motion on 
a two-bladed articulated rotor model with rectangular, 
untwisted blades. At low blade pitch, significant effects of 
the returning shed wake were observed for excitation 
frequencies near an integer. In the hover flap response to 
collective, for zero mean collective, the magnitude of the 
response was nearly quasistatic (good prediction using 
C = 1) except near 2/rev, where the reduced magnitude 
observed experimentally was predicted using Loewy’s ′ C . 
The phase was nearly quasistatic at low frequency, with 
significant phase shift above 1.5/rev, predicted using 
Loewy’s function. In the hover flap response to vertical 
hub motion, for zero collective, a large increase in the 
magnitude was observed experimentally at frequencies 
near a multiple of 2/rev, predicted using Loewy’s ′ C  
(fig. 14). At collectives of 5 and 10 degrees in hover, the 
measured response was reduced. Forward flight ( μ = 0.1 
and 0.2) produced little effect on the measured response 
to hub motion for zero collective. 

Silveira and Brooks (ref. 53) tested two-bladed teetering 
and articulated rotors in hover, for collective pitch angles 
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of 0 and 3 degrees. For the teetering rotor, the flap 
bending modes were excited by vertical motion of the 
hub, then the damping obtained from free decay. The 
measured damping of the second and third elastic flap 
modes exhibited a reduction in damping at multiples of 
2/rev (fig. 15), which was successfully predicting using 
the real part of Loewy’s function, ′ F (k,m,h). 

DIGITAL COMPUTERS 

 
The availability of practical digital computers had a 
critical impact on the development of rotorcraft 
aeromechanics, far greater than the impact on the 
engineering for fixed-wing aircraft. Rotation makes all the 
problems harder. Important problems that for fixed-wing 
aircraft can be attacked analytically or with simple 
numerical methods, cannot be handled successfully for 
rotary wings. 

Wakes are more important for rotor blades, which must 
fly over the vorticity from preceding blades, and the wake 
filaments are helices instead of straight lines. Rotorcraft 
systems are described not by time-invariant equations, but 
by equations with periodic coefficients and periodic 
steady-state solutions. Rotor blades move, and even low-
frequency models require representation of the rotor states 
in addition to aircraft states. Blades can be modeled by 
beam theory but with small, yet important, nonlinearities. 
All of these difficulties were waiting for the engineer with 
a digital computer. 

The computer changed the way problems would be 
formulated and solved. Before the computer, there were 
extensive analytical developments with results in tabular 
or graphic form. After the computer, detailed theoretical 
models with numerical solutions for specific cases became 
possible. Typically, the first applications of the computer 
were to generate bigger tables and graphs based on more 
elaborate models, but soon more engineers had access to 
the machines and dedicated solutions became practical. 

For example, the succession of efforts following Glauert’s 
work dealt primarily with refinement of the estimate of 
profile power, while still using Glauert’s momentum 
theory for the induced power. The work on wakes focused 
on calculating the flow field using actuator disk models. 
The digital computer was needed in order to attack 
induced velocity and induced power calculation using 
detailed aerodynamic models. Even today, rotary-wing 
aeromechanics finds immediate use for every advance in 
computer speed and capacity. 

High-speed digital computers first became available to 
industry and government laboratories for use in 
engineering calculations during the early 1960s. 

AIRLOADS AND WAKES 

 
Computation of harmonic airloading on a helicopter rotor 
blade in forward flight was accomplished by Rene Miller 
of  MIT (refs. 54–62), and Raymond A. Piziali and Frank 
A. DuWaldt of CAL (refs. 63–68). Miller (refs. 54–55) 
described the problem: 

“The determination of the air loads acting on 
rotor blades in forward flight presents an 
interesting and challenging problem in applied 
aerodynamics. Of particular importance for 
design purposes are the oscillatory components 
of this loading occurring at harmonics of the 
rotor speed. Unlike a wing, the trailing and shed 
vortex system of the blade generates a spiral 
wake that returns close to the blade. Because of 
its close proximity to the blade, the wake cannot 
be considered as rigid. Also, since the resulting 
loads are highly time-dependent, unsteady 
aerodynamic effects become important. … 

The oscillatory air loads occurring at harmonics 
of the rotor speed are the primary source of the 
blade stresses that establish the fatigue life of the 
structure and of the periodic hub loads that 
determine the fuselage vibration level. … 

The higher harmonic components of the air 
loading must, therefore, arise primarily from a 
nonuniform downwash at the rotor disk 
generated by the rotor wake. Their analytical 
determination requires some means of computing 
this downwash which takes into account both the 
spiral wake geometry, its effects on the 
individual blades, and the unsteady aerodynamic 
effects associated with the blade passage through 
this variable velocity field.” 

With a uniform or linear inflow distribution, the predicted 
harmonic blade loading is of the order μ n  (where n  is the 
harmonic number), in contrast to the large fifth or sixth 
harmonics that are measured in certain flight states such as 
transition or flare. This large harmonic loading is the 
source of the roughness and noise associated with such 
flight states, and is due primarily to the wake-induced 
velocities. The work at MIT and CAL was the extension 
of nonrotating wing and two-dimensional airfoil unsteady 
aerodynamic theory to the complicated wake of the 
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helicopter rotor in forward flight, made possible by the 
digital computer. Developing wake models for rotor 
nonuniform inflow calculations continues today, but the 
work started with Miller. 

Miller 

Miller relates (ref. 57) that experimental work at MIT in 
the 1950s (such as references 69–70) made clear the 
importance of unsteady aerodynamics for rotor blades: 

“The tests … clearly indicated the need for an 
analytical tool for computing blade downwash 
velocities which would take into account the 
individual blade wake geometry and also 
introduce the effects of unsteady aerodynamics. 
Attempts to obtain a closed form solution to this 
problem, or one based on tabulated integrals, 
were not successful and it was evident that 
extensive computer facilities would be required 
to explore this problem and, hopefully, to provide 
a basis for obtaining simplified solutions suitable 
for engineering applications. In 1960 the 
availability of an IBM 709 computer at the MIT 
Computation Center and funds from a Carnegie 
grant permitted initiation of such a program.” 

Miller’s first publication of this work was a 102-page IAS 
paper presented in January 1962 (ref. 54), later published 
as reference 55. The work was supported primarily by the 
Department of the Navy. In October 1963, Miller 
delivered the Cierva Memorial Lecture to the RAS; this 
lecture was the basis for reference 58. 

The rotor model consisted of a sheet of distributed 
vorticity for the blade, and a wake of shed and trailed 
vorticity. “Obviously the trailing wake does not disappear 
to infinity but returns underneath the rotor in a spiral form 
and the very nature of this spiral prevents the development 
of simple solutions for the downwash w1 which it induces 
at the blade” (ref. 56). From reference 58: 

“It becomes possible to discuss the physics of 
rotor aerodynamic loading in fairly simple terms. 
The primary element is the steady rotor lift 
generated by the bound circulation on the rotor 
blades. This bound circulation, as it leaves the 
blades, generates a spiral vortex system in the 
wake of constant strength dependent only on 
mean rotor thrust. The vertical component of 
induced velocity generated by this vortex system 
at a point on the blade, when combined with the 
horizontal velocity at the blade due to the blade 
rotation and forward speed, determines the 
induced angle. … As might be expected, it is far 

from uniform over the disc. Consequently the 
blade is subjected to a constantly varying induced 
angle as it rotates and this is the primary source 
of the higher harmonic blade loading. … 

These vortices are swept back relative to the 
rotor by the forward speed and consequently a 
blade, as it advances towards the leading edge of 
the rotor must pass over a series of vortices 
generated by itself and the other blades [fig. 16]. 
Similarly in returning towards the trailing edge it 
must repass over this system of vortices. 
Consequently any point on the blade will 
experience a fairly abrupt change in downwash 
on the advancing and retreating sides of the rotor 
and this is a primary source of rotor vibration.” 

The concept if a “semirigid” wake was introduced 
(ref. 55): “Every element of vorticity will be assumed to 
retain the instantaneous vertical velocity imparted to it at 
the moment it was shed or trailed. This establishes a spiral 
wake descending at every spanwise station with a constant 
velocity in time but permits different vertical velocities 
azimuthwise.” The Biot-Savart law gave the induced 
velocity increment caused by trailed vorticity (from radial 
change in bound circulation) simplified to the case of a 
lifting line in which the variation over the chord is 
neglected. Based on computations that indicated the 
circulation was substantially constant over at least the 
outer 50% of the blade span (ref. 58), usually the trailing 
wake was assumed to consist of a single tip vortex, plus 
another vortex of equal strength located somewhat 
inboard of 50% span. It was necessary to integrate from 
the blade to infinity down the spiral, initially 
accomplished with numerical integration. The Biot-Savart 
law gave the induced velocity increment caused by shed 
vorticity (from azimuthal change in bound circulation), 
but here the chordwise variation was needed. From 
reference 58: 

“Computations of air loads is complicated by the 
existence of singularities in the solution. These 
occur as the shed wake approaches the trailing 
edge of the rotor and whenever the blade passes 
through a trailing vortex line generated by itself 
or another blade. The treatment of the 
singularities and of the nonuniform flow field 
presents no basic problem providing lifting 
surface theory is used. However, this requires the 
numerical evaluation of the downwash at several 
chordwise as well as spanwise stations and 
hence, usually involves a prohibitive amount of 
machine computation time. Approximate 
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methods have therefore been used to evaluate the 
unsteady aerodynamic effects. … 

One of the most troublesome of the singularities 
is that associated with a shed vortex approaching 
the blade. In the simplest solution for the blade 
air loads it is convenient to replace the blade by a 
single vortex line and normally the high aspect 
ratio of conventional rotors would suggest that 
this is a reasonable approach.” 

The initial approach was to develop a combined analytical 
and numeral procedure (ref. 54): 

“The rotor wake will be divided up into a “near” 
wake and a “far” wake, the near wake including 
that portion attached to the blade and extending 
approximately one-quarter quadrant from the 
blade trailing edge. … The chordwise variations 
in the velocity w  induced at the airfoil by the far 
wake will be neglected. This is equivalent to 
using lifting-line theory when computing the 
effects of the far wake on the airfoil bound 
circulation and lift. … The lifting-line 
approximation will also be used for the near 
trailing wake, an approximation that is clearly 
justified for the high “aspect ratios” of rotors and 
rotor/propellers. The near shed wake will be 
treated using analytical techniques and lifting 
surface theory.” 

Thus, (ref. 58) “the near wake was treated using 
techniques similar to classical two-dimensional theory. 
However, the computational sequences for such a 
combined analytical and digital solution are clumsy and 
not well suited to machine computational techniques.” In 
reference 56, a simpler method was developed in which 
the induced velocity was calculated at a single point on 
the airfoil chord, but only using the shed wake up to a 
distance ε(c / 2)  behind the collocation point. Considering 
two-dimensional unsteady airfoil theory, “ε  was chosen 
so that the lift deficiency and phase shift predicted by the 
simple lifting line theory developed above would be the 
same as that predicted by the equivalent lifting surface 
theory” (ref. 58). The result was ε ≅ 0.5 for low reduced 
frequency. Then the wake analysis was entirely numerical, 
with no analytical part. 

Miller’s results included analytical work to support the 
assumptions and simplifications (ref. 55). A two-
dimensional solution for a hovering rotor was developed 
to obtain Loewy’s results using a lifting line 
approximation for the far wake. A three-dimensional 

solution for vertical flight was developed from vortex 
theory for an unsteady actuator disk. 

Three-dimensional solutions for forward flight were 
obtained by numerical integration on a high-speed digital 
computer. In reference 55, the calculated inflow was 
compared with the measured airloads of Falabella and 
Meyer (ref. 69), interpreted as a measured downwash. In 
reference 58, comparisons were made with the measured 
airloads of Rabbott and Churchill (ref. 71), and the flight 
test data of Scheiman (ref. 72): 

“More recent experimental data, however, have 
supported the prediction of these abrupt changes 
in downwash near the 90o and 270o azimuth 
positions. In particular, flight test data obtained 
on a four-bladed rotor by NASA [ref. 72] are 
compared in [fig. 17] with the loads computed in 
the manner described above. The abrupt change 
in load near the 90o azimuth is almost impulsive 
in nature and will have a high harmonic content. 
… The computations of [ref. 54] indicated that 
this abrupt load change is largely dominated by 
the vortex generated by the immediately 
preceding blade.” 

Professor Miller acknowledged the assistance of his 
student, Michael P. Scully, in preparing reference 58. 
Scully, who started working for Miller in September 1963, 
carried the research forward, dealing in reference 60 with 
the efficiency of the wake model: 

“The original solution for the induced velocity in 
forward flight due to the trailing wake used 
numerical integration down the spiral wake 
[ref. 55]. This method required small interval 
sizes (typically 7.5o in azimuth), and hence, large 
amounts of computer time to get accurate results. 
A solution was also developed [ref. 58] where the 
spiral wake is replaced by a set of infinite straight 
line vortices (for which the induced velocity is 
known) placed tangent to the spiral at every point 
where the spiral passes under a blade during the 
first turn of the spiral. This solution is 20 times as 
fast as the numerical integration solution; 
however, it is less accurate. … 

Finite Straight Line (FSL): This solution replaces 
the spiral vortex trailing wake with a series of 
straight line segments [see figure 18]. Originally, 
it was intended to take shorter line segments in 
the vicinity of nearest points and longer segments 
elsewhere. Due to the considerable amount of 
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computer time involved in finding all the nearest 
points, however, a solution using a constant Δφ  
(change in azimuth angle) per line segment 
proved to be faster for equivalent accuracy. 

Since FSL is approximately six times as fast as 
the numerical integration method for equivalent 
accuracy, it has been adopted as the normal 
method of calculating induced velocities. It is 
even used for distorted wake cases where the 
trailing wake is not a perfect spiral (skewed 
helix) but some more general shape.” 

Thus, Scully’s attention turned to free-wake geometry 
calculations (refs. 61–62). 

 

Figure 16. Wake geometry showing trailing tip vortex and 
element of shed wake (ref. 58). 

 

 

Figure 17. Comparison of computed and experimental air 
loads; H-34 flight test at μ = 0.2  (ref. 58). 

 

 

Figure 18. Finite straight-line approximation  
(refs. 61–62). 

Piziali and DuWaldt 

The work by Piziali and DuWaldt was motivated in part 
by flight test experience with high-oscillatory blade loads, 
attributed to nonuniform inflow velocities at blades 
(ref. 46). The CAL project was sponsored by the U.S. 
Army. The initial phase was conducted from September 
1960 to April 1962 (ref. 63), and published as a 
Transportation Research Command (TCREC) report in 
November 1962. The work was performed largely by 
Raymond A. Piziali, who joined CAL in 1957. Frank 
DuWaldt was the group leader and Walt Targoff the 
division chief at the time. Targoff’s contributions were 
acknowledged in reference 63: “The form in which the 
problem was cast and the method of solution stem directly 
from his collaboration.” The final phase was from 
April 1964 to June 1965 (ref. 66). As summarized in 
reference 67: 

“One of the most difficult problems in designing 
and developing a lifting rotor system is generally 
recognized to be the adequate prediction of the 
rotor performance, the blade stresses, and the 
pitch control settings when given only the blade 
and hub physical properties, the fuselage weight 
and aerodynamic coefficients, and the steady-
state flight condition. Conceptually, the problem 
consists of the following three major aspects: (i) 
the rotor blade aerodynamic loads, (ii) the static 
and dynamic response of the blades, and (iii) the 
rotor-fuselage trim. These three aspects of the 
problem are closely inter-dependent and should 
all be included in a useful prediction method.” 
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References 63–65 concentrated on the aerodynamic aspect 
of the problem: 

“Any accurate method of computing the airloads 
must adequately predict the wake-induced 
velocities at the blades because the airloads are 
strongly influenced by these velocities. However, 
because the vortical wake of the rotating wing is 
extremely complex and difficult to adequately 
represent mathematically, the practical solution 
of the aeroelastic problem has been delayed. 
Early attempts to solve this problem analytically 
were based on relatively drastic simplifications of 
the wake of the rotor to make them 
computationally feasible. The modern high-speed 
computing machines of today have made it 
possible to account for much more of the detail 
of the wake than has been possible in the past 
and thus permit an adequate aerodynamic 
representation of the blades and wake to be 
formulated which will enable accurate 
computation of the rotor airload distributions. 
The method of computing airloads developed in 
this investigation makes use of high-speed digital 
computation to retain much of the detail of the 
wake.” 

Reference 67 added the blade motion solution: 

“A numerical method is presented for solving the 
aeroelastic response problem of rotating wings in 
steady-state flight (hovering or translating). The 
method employs high-speed digital computation, 
is simple to use, and is relatively fast. It accounts 
for the shed and trailing vorticity of the wake of 
each blade in computing the induced velocities 
on the blades and satisfies the chordwise 
aerodynamic boundary condition for computation 
of the aerodynamic lift and pitching moments. 
The equations of motion for the blade flapping 
and flapwise bending degrees of freedom are 
included, and an iterative procedure is used 
which yields a simultaneous solution for the 
aerodynamic loads, the dynamic response and the 
bending moments experienced by the rotor 
blades.” 

Reference 63 started with a vortex-lattice model of the 
wake (fig. 19): 

“Each blade of the rotor is represented by a 
segmented lifting-line (bound vortex) located 
along the steady deflected position of the quarter-
chord. … In the wake, the shed and trailing 

vorticity distributions of each blade are 
represented by a mesh of segmented vortex 
filaments; each segment is straight and of 
constant vortex strength. The segmented trailing 
vortex filaments emanate from each of the end 
points of the lifting-line segments. The 
segmented shed vortex filaments intersect the 
trailing filaments in a manner such that the end 
points of both are coincident.” 

The Biot-Savart law gave the induced velocity at the 
collocation points (three-quarter chord) on the rotor disk. 
Simultaneous equations were formulated for the bound 
circulation at the collocation points, and an iterative 
solution implemented. It was observed (refs. 63 and 67) 
that the computed airloads were sensitive to the wake 
geometry: “To determine this exactly would require that 
the total induced velocities be computed throughout the 
wake for each instant of time and that the wake elements 
be moved according to their local induced velocities for 
each increment of time; such a procedure becomes 
computationally impractical, even on a high-speed digital 
computer” (ref. 65). 

References 66–67 further developed the wake model 
(fig. 20), both for efficiency of computations and to 
improve the tip vortex representation: 

“In the present representation, the azimuthal 
extent behind each blade of the grid of straight-
line vortex filaments representing the shed and 
trailing vorticity distributions can be truncated 
where desired and the wake continued on as 
segmented rotor and/or tip trailing vortex 
filaments. … This type of wake representation is 
believed to be a first order approximation to the 
actual wake which apparently rolls up very 
quickly into a tip vortex. … Beyond the 
truncation of the wake grid, the root and/or tip 
trailing vortex strengths are made equal to the 
maximum value of the radial distribution of the 
bound vorticity on the blade in the azimuth 
position from which the elements were shed.” 

 

Figure 19. Pictorial example of the initial portion of the 
wake of a two-bladed rotor divided into four radial 
segments (ref. 63). 
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Figure 20. Example of wake configuration (ref. 67). 

 

 

The early work did not deal with the issue of the near shed 
wake. From reference 65: 

“It has been found conceptually convenient to 
view the aerodynamic loading aspect of the 
overall aeroelastic problem in the following 
manner: The wing and its “immediate” attached 
wake can be thought of as a “wing-wake system” 
for generating a force. … The remainder of the 
wake, which is the returning wake of the wing 
and all the wake of the other wings in the rotor, 
and the motions of the wing are then thought of 
as providing the input to this system. … In 
addition to having an adequate representation of 
the input source for the wing-wake system, a 
successful computational procedure must have an 
adequate representation of the wing-wake system 
itself. In the initial approach, the wing was 
represented by a single bound vortex at the 
quarter-chord, satisfying boundary conditions at 
the three-quarter-chord and the immediate wake 
was represented by a system of concentrated 
vortex filaments shed at equal increments of 
time. The major approximations involved in this 
initial approach are: (1) the boundary conditions 
are satisfied at only one point on the chord, and 
(2) the immediate wake is represented by 
concentrated vortices equally spaced in time from 
the trailing edge.” 

In reference 67, “for the blade representation, the theory 
of two-dimensional unsteady thin airfoils has been used,” 
with the Biot-Savart law evaluation of wake-induced 
velocity along the chord, in terms of coefficients of a 
cosine series. The investigation dealt with the effects of 
discretization of the shed wake. From reference 67: 

“In the wake representation of the earlier work, a 
segmented shed vortex was deposited in the flow 
at each azimuth position of the blade; thus the 
nearest shed vortex to the blade was behind it a 
distance proportional to the time it takes the 
blade to traverse one azimuthal increment. The 
adequacy of this representation of the wake shed 
vorticity was investigated by using it in a 
computational model to predict the lift and 
pitching moment transfer functions (for both the 
pitching and plunging cases) for a two-
dimensional oscillating airfoil at zero mean angle 
of attack. The results were compared with the 
classical analytical solutions for this problem, 
and as expected, the agreement was not very 
good. A computational investigation of discrete 
shed wake representations was then conducted by 
use of this computational model for the two-
dimensional oscillating wing problem. It was 
found that reasonable agreement could be 
obtained in the reduced frequency range of 
interest by using the equally spaced discrete shed 
vortex representation if the entire shed vortex 
wake were advanced, with respect to the blade 
producing it, a distance proportional to 70% of a 
time increment.” 

In reference 68, Daughaday and Piziali developed a two-
dimensional airfoil theory with a discretized wake model 
to match the Theodorsen solution, using a continuous 
sheet of vorticity for the shed wake directly behind the 
blade trailing edge. Figure 21 illustrates the two shed-
wake models. 

The calculated airloads were compared with data from a 
wind tunnel test of a NASA model rotor (ref. 71), flight 
test of an HU-1A helicopter (ref. 73), and flight test of an 
H-34 helicopter (ref. 74). Figures 22–24 illustrate the 
correlation. “The correlation of the computed and 
measured results is quite good, considering the sensitivity 
of the result to the blade natural frequencies and the 
prescribed wake configuration, and considering further 
that all the blade degrees of freedom and the rotor-
fuselage trim constraints are not yet included” (ref. 67). 
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Figure 21. Near shed-wake models (refs. 67–68). 

 

The analysis permitted important observations regarding 
the aerodynamic environment and performance of rotors. 
“It is interesting to note that the computed induced 
velocity distributions are always such as to oppose the 
retreating blade tip stall which has always been predicted 
on the basis of an assumed uniform inflow distribution” 
(ref. 63). Thus, (ref. 64): 

“The calculations indicate, in general, that the 
effective aerodynamic angle of attack decreases 
with increasing radius over the outer half of the 
retreating blade and “tip stall” does not occur. 
The retreating blade tip will become stalled only 
when the inboard stalled region progresses 
outward to the tip. This is the result of the 
induced velocity distribution.” 

Reference 64 also looked at the calculated induced drag of 
the blades: “Induced power calculated from the induced 
drag distributions was found to be more than three times 
that calculated on the assumption of a uniform induced 
velocity.” 

Parallels 

Miller and Piziali conducted their work largely 
independently, although each was aware of the other’s 
activities. Each described the work at the CAL/TRECOM 
meeting in June 1963 (refs. 57 and 65). Miller published 
first (ref. 54). Miller proceeded from unsteady airfoil 
theory and vortex theory to a discretized model of the 
vortex wake; Piziali took the reverse path. Both had to 
deal with the issue of the near shed wake. Both compared 
airload calculations with the recently available H-34 flight 
test data of Scheiman. As this research was initiated when 

digital computers first became available, both Miller and 
Piziali had programmers to do the actual coding. 
Eventually, the engineers and students learned FORTRAN 
and took over the coding tasks. By the early 1970s, CAL 
was out of the helicopter research business, while Miller’s 
students went on to make further contributions to wake 
geometry and airloads modeling (refs. 62, 75, and 76). 

 

 

 

Figure 22. Azimuthal variation of airloads for NASA 
model rotor, μ = 0.15 (ref. 64). 

 

 

 

Figure 23. Azimuthal variation of airloads for HU-1A, 
μ = 0.26 (ref. 64). 
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Figure 24. Measured and computed lift for H-34 at 
μ = 0.18, mean removed; dashed line measured, solid 
line computed (ref. 67). 
 

HOVER WAKE GEOMETRY 

 
The fundamental character of the wake geometry of a 
hovering rotor was recognized by Robin B. Gray (refs. 
77–78). Hover performance is a key to VTOL aircraft 
design, but theories of the time were based on simple, 
approximate wake models. Gray was a student of 
Professor Nikolsky at Princeton University, and as he 
recounted in his 1991 Nikolsky Lecture (ref. 79): 

“Professor Nikolsky and I had tentatively agreed 
that my PhD research would be directed toward 
improving the performance prediction of a rotor 
in hovering flight by including blade number and 
wake contraction effects. … The initial flow 
visualization studies were undertaken simply to 
determine the boundary of the rotor wake in 
hovering to provide some guidance in developing 
the analysis.” 

In a report approved by A. A. Nikolsky, Gray stated 
(ref. 77): 

“One of the major requirements which have 
always faced the engineer is that of predicting 
the blade aerodynamic loadings with some 
reasonable degree of accuracy. …  

It was then decided that perhaps a more vigorous 
application of the classical methods would yield 
worthwhile results even though it was expected 
that a great deal of numerical work would be 
involved. … 

A classical vortex theory was brought to bear on 
the problem. It is with this latter approach in 
conjunction with some flow visualization studies 
that this paper deals. … 

When it became apparent that the theoretical 
determination of the various constants that would 
appear in the analysis would be very difficult, it 
was decided to undertake the experimental 
program herein described.” 

The flow visualization experiment involved high-speed 
photographs of the wake geometry of a model rotor. The 
wake was made visible by smoke (titanium tetrachloride) 
emanating from the blade tips. Initially, a two-bladed rotor 
was used (ref. 79), but Gray observed the overtaking of 
the tip vortex from one blade by that from the other. He 
attributed this behavior to differences in tip vortex 
strength caused by differences in blade thrust. To 
eliminate this interaction, a one-bladed rotor was used 
(ref. 79). The rotor had an untwisted, constant-chord 
blade, with a radius of four feet. Figure 25 is a typical 
photograph of the flow visualization, showing the tip 
vortices and inboard sheet. Forward flight tests were 
conducted using a truck inside the building constructed for 
the Princeton track facility (ref. 78). 

 

 

Figure 25. Fully developed wake. White dots are the tip 
vortex; the dashed lines show the approximate 
position of the vortex sheet (ref. 77). 
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“From these studies, the vortex model for the near wake of 
a single-bladed rotor was constructed” (ref. 79). Gray’s 
sketch of hovering rotor wake geometry (fig. 26) first 
appeared in reference 78. The flow visualization revealed 
that that tip vortex geometry could be described by an 
exponential contraction plus a two-stage vertical 
convection velocity (fig. 27). “The surprise was that the 
data could be fit with simple algebraic expressions 
involving six measured parameters” (ref. 79). The radial 
and axial coordinates of the tip vortex were 

r = R(A + Be−λ1ψ sinψ + Ce−λ2ψ )

Z = K1Rψ ψ < 2π /b

Z = K1R(2π /b) + K2R(ψ − 2π /b) ψ > 2π /b

 

where ψ  is the wake age, and b is the number of blades. 
From the measured data, the variation of the parameters 
with rotor thrust was established. 

 

 

Figure 26. The vortex pattern in the wake of a single-
bladed hovering helicopter rotor as obtained from 
smoke studies (ref. 78). 

 

Figure 27. Nondimensional radial and vertical 
displacement of tip vortex as a function of azimuth 
position from blade (ref. 77). 

 

Gray’s work was followed by more extensive flow 
visualization tests, which were used to establish 
prescribed wake geometry methods for hovering rotor 
performance calculation. 

Landgrebe at United Technologies Research Center 
(UTRC) (refs. 80–81) conducted a flow visualization test 
and developed a prescribed wake geometry analysis: 

“Systematic model rotor performance and wake 
geometry data were acquired to evaluate the 
influence of wake geometry on rotor hover 
performance.” 

Figure 2 of reference 81 is Gray’s sketch of hover wake 
geometry. Landgrebe used externally generated smoke 
filaments to visualize the wake of a 2.2-foot-radius model 
rotor (fig. 28). The test matrix included a range of blade 
numbers (2 to 8), twist, blade-aspect ratio (13.6 to 18.2), 
and collective pitch. Landgrebe also notes the “discovery 
of a reduction in wake stability with increasing distance 
from the rotor.” Landgrebe described the structure of the 
wake (ref. 81): 

“The wake contains two primary components. 
The first, and most prominent, is the strong tip 
vortex which arises from the rapid rolling up of 
the portion of the vortex sheet shed from the tip 
region of the blade. The second feature is the 
vortex sheet shed from the inboard section of the 
blade. The vertical or axial transport velocity 
near the outer end of the inboard vortex sheet is 
much greater than that of the tip vortex. The 
vertical velocity of the vortex sheet also increases 
with radial position, resulting in a substantially
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linear cross section of the vortex sheet at any 
specific azimuth position. These characteristics 
largely result from the velocities induced by the 
strong tip vortex.” 

From the flow visualization data, a generalized 
representation of the near-wake geometry was 
constructed. The form of the equations for contraction and 
convection followed Gray. Analytic expressions were 
developed for the variation of the wake geometry 
constants with CT , CT /σ , and twist, for the tip vortex 
and for the inboard and outboard edges of the wake sheet. 
Analyses based on this realistic wake geometry provided 
significantly improved prediction of rotor performance 
characteristics. 

Kocurek and Tangler at Bell Helicopter (ref. 82) 
conducted a flow visualization test of a model rotor in 
hover, and developed a prescribed wake analysis method. 
The wake of a 1.0-foot-radius rotor was visualized with 
Schlieren techniques (fig. 29). The test matrix included a 
range of blade numbers (1 to 4) and blade-aspect ratio (7.1 
to 18.2) beyond that of Landgrebe, specifically covering 
low-aspect-ratio, two-bladed rotors. The form of the 
equations for contraction and convection were the same as 
used by Landgrebe, but with different dependence on 
thrust and blade geometry. 

Gray’s sketch of hovering rotor wake geometry remains 
the starting point for investigations of hovering rotor 
aerodynamics, and echoes of it are often seen (fig. 30). 
Modern flow measurement techniques confirm Gray’s 
description of the wake (fig. 31). 

 

 

 

Figure 28. Landgrebe: sample flow visualization 
photograph (ref. 80). 

 

 

Figure 29. Kocurek and Tangler: single and multiple 
exposure schlieren photographs (ref. 82). 

 

Figure 30. A rotor-wake system with an embedded finite-
difference grid (ref. 83). 

 

Figure 31. PIV measurement of hover wake geometry for 
untwisted blades (courtesy M. Ramasamy, ref. 84). 
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LATERAL FLAPPING 

 
Test data for the definitive assessment of rotor wake 
models at low speed were obtained by Franklin D. Harris 
of Boeing (ref. 85). Glauert and Wheatley encountered 
discrepancies between calculated and measured lateral 
force or flapping, and attributed the difference to the 
simplified inflow model used. Introducing a longitudinal 
gradient of the inflow did improve the calculation. The 
capability to predict lateral flapping is needed to design 
the control system. Moreover, the inability to predict it 
implies something is seriously wrong with the analysis, as 
Cierva pointed out to Glauert (ref. 2). 

In October 1970, as part of a wind tunnel investigation of 
a tandem helicopter, Frank Harris tested the aft rotor alone 
and measured lateral and longitudinal flapping angles for 
speed, thrust, and shaft angle variations at low speed. As it 
was a small rotor in a big wind tunnel (5.46-ft diameter in 
20- by 20-ft tunnel; fig. 32), he took advantage of the 
opportunity to collect data on rotor behavior at very low 
advance ratio. He was interested in lateral flapping from 
previous experience trying (unsuccessfully) to predict 
pedal position on a tandem helicopter. There was 
contemporary interest because of pitch control issues on 
the XH-59A; because of the very stiff rotors required for 
the lift-offset rotor concept, longitudinal inflow gradients 
produce pitch moments rather than lateral flapping. Harris 
used the test data to assess the capability to predict lateral 
flapping using the wake models available at the time. 

Figure 33 from reference 85 shows the lateral flapping as 
a function of advance ratio for fixed cyclic control, at 
constant thrust and shaft angle. The measured lateral 
flapping shows a large increase with speed, reaching a 
maximum value at μ = 0.08, a behavior that was not 
predicted by simple inflow distributions, vortex theory, or 
rigid wake geometry models. In contrast, the longitudinal 
flapping angles are well predicted even with simple inflow 
models. 

As suggested by Harris (ref. 85), a free-wake geometry 
analysis is required to satisfactorily calculate the lateral 
flapping. For example, figure 34 shows calculations 
obtained using Comprehensive Analytical Model of 
Rotorcraft Aerodynamics and Dynamics (CAMRAD) with 
Scully’s free-wake geometry (ref. 61). Examination of the 
solution (ref. 86) identifies the blade-vortex interaction on 
the advancing and retreating sides of the rotor disk as the 
source of a large longitudinal inflow variation, the 1/rev

component of which is responsible for a lateral flapping 
angle increment. Interaction with the rolled-up tip vortices 
produces large peak inflow values. The self-induced 
distortion of the wake moves the tip vortices close to the 
blades (much closer than suggested by rigid wake 
geometry), thereby increasing the strength of the blade-
vortex interaction. Thus, a free-wake geometry calculation 
is needed to correctly calculate the lateral flapping as 
measured. 

Harris’s test provides a concise metric that characterizes 
the adequacy of a rotor wake model. Predicting his lateral 
flapping data requires a detailed representation of the 
vortex wake geometry and structure. 

 

 

 

Figure 32. Vertol Division universal helicopter model 
(ref. 85). 

 

 

 

Figure 33. Measured rotor lateral flapping angle, 
compared with calculations using various wake 
models (ref. 85). 
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Figure 34. Calculation of lateral flapping angle using 
Scully’s free-wake geometry (ref. 86). 

 

DYNAMIC INFLOW 

 
The dynamic inflow model for the wake in unsteady rotor 
aerodynamics was developed by David A. Peters and Dale 
M. Pitt at Washington University (ref. 87). When I taught 
a short course on helicopters, I emphasized two crucial 
characteristics of rotor behavior: the blades move and 
wake effects are everywhere. The best representation for 
the wake is still a vortex model, but for stability analysis 
and real-time simulations a finite state model of the wake 
is needed. A dynamic inflow model is a set of first-order 
differential equations relating inflow variables and 
aerodynamic loading variables. The Pitt and Peters model 
consists of three states. The inflow variables describe the 
distribution of wake-induced velocity over the rotor disk: 
uniform ( λ0 ) plus linear ( λc  and λ s ). The loading 
variables are the integrated section lift of all blades: thrust 
CT , pitch moment CM , and roll moment C L  
(aerodynamic contributions only). More than three 
decades of work was the foundation for reference 87. 

Carpenter and Fridovich (ref. 88) examined rotor response 
to collective changes in hover, motivated by helicopter 
jump take-off maneuvers. They tested a three-bladed 
articulated rotor, measuring the transient thrust and 
flapping response. To predict the effect of a rapid blade-
pitch increase, they extended momentum theory by adding 
a time lag: 

T = mÝ v + 2πR2ρv(v + Vv )  

where v  is the instantaneous induced velocity. Regarding 
the mass m: 

“If the induced velocity is assumed to be uniform 
over the rotor disk, the initial flow field [for 
sudden increase in pitch angle] is exactly 

analogous to the flow field produced by an 
impervious disk which is moved normal to its 
plane. The “apparent additional mass” of fluid 
associated with an accelerating impervious disk 
is given in [Munk, ref. 89] as 63.7 percent of the 
mass of fluid in the circumscribed sphere.” 

In work originally published in 1958–1959, Rebont, 
Valensi, and Soulez-Lariviere (refs. 90–92) considered the 
response of hovering rotor thrust to collective pitch 
changes, making the distinction that their interest was 
descending flight (landing) and near autorotation, not 
take-off as in reference 88. They extended momentum 
theory “by adding an inertia term, m Ý λ iU  [U  is the tip 
speed], where m represents the virtual mass associated 
with the disk, which may be assumed equal to that 
associated with a solid disk in nonuniform translation 
perpendicular to its plane.” (No doubt this read better in 
the original.) The model was verified by experiments. 

Curtiss and Shupe (refs. 93–94) considered the influence 
of quasistatic inflow variation on hingeless rotor response, 
expressing the result as an effective Lock number. 
Essentially, this was a derivation of the static lift 
deficiency function, appearing in the Lock number by way 
of the lift-curve slope. 

Ormiston and Peters (ref. 95) investigated the modeling 
requirements for accurate prediction of hingeless rotor 
response. An equivalent-hinge model of the hingeless 
blades was not satisfactory, instead the first two elastic 
flap bending modes were needed. “Simplified models of 
the nonuniform induced inflow were derived, using 
momentum and vortex theory, and found to be the most 
important factor in improving correlation with the data.” 
The inflow variables were the mean and 1/rev terms in a 
Fourier series, hence uniform along the blade for a given 
azimuth (not uniform plus linear over the disk). The three 
inflow variables were expressed as a linear combination of 
the rotor aerodynamic thrust and hub moment 
perturbations. For high advance ratio it was necessary to 
identify the inflow derivatives from the wind tunnel test 
data of hingeless rotor response, consisting of steady 
thrust and hub moment response to collective and cyclic 
pitch control (ref. 96). These identified derivatives 
exhibited anomalous behavior around μ = 0.8. 

Hohenemser and Crews (ref. 97) tested a two-bladed 
hingeless rotor in hover and at μ = 0.2, measuring the 
blade flap response to cyclic pitch (stick stir). Crews, 
Hohenemser, and Ormiston (ref. 98) developed an 
analysis to predict this test data. Following reference 88, 
they introduced a time lag in the inflow model: 
λ +τ Ý λ = L(2γ /σa)C , for the cosine and sine 1/rev 
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harmonics of the inflow ( λ ), in response to hub 
aerodynamic pitch and roll moments ( C ). For three-
bladed rotors, the result is a lift deficiency function or 
effective Lock number that depends on excitation 
frequency. When appropriate values (dependent on 
collective) of τ  and L  were used, good prediction of the 
measured flap response was obtained (fig. 35). Banerjee, 
Crews, Hohenemser, and Yin (ref. 99) identified values of 
τ  and L . 

While the tests were conducted by measuring rotor 
frequency response, the analysis was no longer in the 
frequency domain (as with Theodorsen and Loewy), but 
rather finite state models in the time domain. 

Peters (ref. 100) continued the investigation of modeling 
requirements for hingeless rotor response, using a 
dynamic rather than quasistatic inflow model, and 
comparing with frequency response as well as static 
measurements. Previous work was characterized: 
“Unfortunately, while some success has been achieved 
using simple models of the rotor induced flow in hover, a 
completely satisfactory induced flow model for forward 
flight has not been found, not even for the condition of 
steady response. In addition, neither the physical values of 
the induced flow time constants nor the frequency range 
in which they are important is known.” (The conclusions 
in reference 95 were less pessimistic.) The three-state 
dynamic inflow model was used, with inflow variables 
representing uniform and linear variation over the disk. 
Following reference 88, which obtained good agreement 
with transient thrust measurements, a time lag was 
included in the relation between inflow and loading 
variables. “An approximation to the apparent mass terms 
of a lifting rotor can be made in terms of the reaction 
forces (or moments) on an impermeable disk which is 
instantaneously accelerated (or rotated) in still air.” These 
apparent mass values were obtained from reference 101. 
The resulting nondimensional constants (τ = Km / 2v  for 
uniform variable, τ = 2KI / v  for linear first-harmonic 
variables) were Km = 8 / 3π  and KI = 16 / 45π ; the latter 
agreeing with the identified τ  value of reference 98. 
Good agreement with hingeless rotor response 
measurements was obtained using inflow/loading 
derivatives from momentum theory for hover and from the 
empirical model of reference 95 for forward flight. The 
reliance on an identified, empirical model for the 
derivatives was not satisfactory. 

As Peters recounted in his 2008 Nikolsky Lecture 
(ref. 102), he “returned to Washington University in 1975 
and Dale Pitt came as his second doctoral student in 1977. 
Peters did not want to do a literature search, but Pitt had a 

better idea and discovered Prandtl, Kinner and Mangler/ 
Squire.” Pitt’s doctoral thesis (ref. 103) appeared in 1980. 

Kinner (ref. 104) used the acceleration potential approach 
of Prandtl to solve for the flow around a circular wing. 
Reference 104 begins: 

“This work was intended initially as a 
contribution to the autogiro theory. In order to 
limit the scope the cross-flow of the disk was 
assumed to be zero, thus the disk can be replaced 
as a fixed wing in stationary flow.” 

A footnote to this paragraph stated that the idea originated 
from Dr. Küssner, AVA Göttingen. The work was 
Kinner’s dissertation at the University of Göttingen under 
Professor Ludwig Prandtl. Kinner developed a separation 
of variables solution for a circular wing. 

Mangler (refs. 105–107) used separation of variables in 
elliptical coordinates (fig. 36) to solve Laplace’s equation 
for the acceleration potential of a circular actuator disk. 
He had an English translation of Kinner’s paper (ref. 104) 
available. Mangler evaluated for hover the derivatives of 
uniform and linear inflow variables with thrust and hub 
moment loading variables. In an amazing analytical effort, 
he evaluated the integrals required to obtain the inflow 
due to thrust for the actuator disk in forward flight (a 
skewed cylindrical wake). Pitt and Peters (ref. 87) cite this 
theory as presented by Joglekar and Loewy (ref. 108). 

 

 
Figure 35. Flap response to cyclic stick stir, amplitude, 

and phase as a function of frequency ratio (ref. 98). 
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Figure 36. Ellipsoidal coordinate system (ref. 87). 

 

Pitt and Peters (ref. 87) described the objective of the 
work: 

“A linear, unsteady theory is developed that 
relates transient rotor loads (thrust, roll moment, 
and pitch moment) to the overall transient 
response of the rotor induced-flow field. The 
relationships are derived from an unsteady, 
actuator-disc theory; and some are obtained in 
closed form.” 

and the background (reference numbers have been 
changed to those in the present paper): 

“It has been known for some thirty years that the 
induced-flow field associated with a lifting rotor 
responds in a dynamic fashion to changes in 
either blade pitch (i.e. pilot inputs) or rotor 
flapping angles (i.e. rotor or body dynamics) 
[refs. 88, 109, 110]. In recent years, it has been 
found that dynamic inflow for steady response in 
hover can be treated by an equivalent (i.e. 
reduced) Lock number [ref. 93]. For more 
general conditions, such as transient motions or a 
rotor in forward flight, it has been determined 
that the induced flow can be treated by additional 
“degrees of freedom” of the system. Each degree 
of freedom represents a particular inflow 
distribution, and each has its own particular gain 
and time constant [refs. 95, 98, 100]. 

Although the above results have provided some 
impressive correlation with experimental data, 
there is still no general theory to predict the gains 
and time-constants of dynamic inflow. Values 
from momentum theory give excellent results in 
hover, but are clearly inadequate in forward 
flight [refs. 95, 100]. A simple vortex model [ref. 
95], gives some improvement in forward flight 

but is still not satisfactory. An empirical model 
based on the best fit of response data [refs. 95, 
100], gives excellent results; but several peculiar 
singularities remain unexplained. Thus there is a 
need to determine the dynamic-flow behavior 
from fundamental, aerodynamic considerations.” 

Representing the inflow distribution over the rotor disk by 
uniform plus linear terms, λ = λ0 + λ c r cos ψ + λ sr sinψ , 
“the dynamic inflow models of refs. 98 and 100 assume 
that the inflow is related to the aerodynamic loads in a 
linear, first-order fashion.” 
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“The purpose of this research is to find the elements of 
[L]  and [M ]  from basic aerodynamic principles and to 
also investigate the validity of this linear, first-order 
form.” 

A solution was obtained for the incompressible potential 
flow about the rotor, which was represented by an actuator 
disk. The equations of mass and momentum conservation 
were written for small disturbances relative to the mean 
flow, which is a uniform free stream v  at angle α  relative 
to the rotor disk (α = 90  degrees for axial flight). The 
acceleration potential (perturbation pressure) satisfies 
Laplace’s equation, with the boundary condition of the 
pressure discontinuity on the rotor disk. A separation of 
variables solution is possible in ellipsoidal coordinates 
(fig. 36), resulting in separate radial and azimuthal loading 
functions on the rotor disk. From reference 87: 

“The actuator-disc theory that we use in this 
investigation is based on pressure distributions 
developed by Kinner [see refs. 104, 108]. Kinner 
discovered a family of pressure distributions that 
solve Laplace’s equation, and that also give a 
pressure discontinuity (i.e. lift) across a circular 
disk.” 

However, this family of distributions does not encompass 
all solutions; in particular it does not include a uniformly 
loaded disk. The coefficients of the loading distribution 
are related to the integrated forces on the disk, with thrust 
and pitch and roll moments obtained only from the lowest 
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order solutions. The induced velocity is represented by a 
series, λ = λ0 + λ c r cos ψ + λ sr sinψ . The momentum 
equation is linearized in order to relate the velocity to the 
acceleration potential. The streamwise derivative of the 
velocity is obtained from the normal gradient of the 
acceleration potential, hence the integral of the 
acceleration potential from far upstream to the disk gives 
the normal velocity at the disk. Exact, analytical solutions 
are possible for axial and edgewise flow. Mangler 
(ref. 106) derived the Fourier series for the induced 
velocity (uniform and longitudinal gradient) from thrust, 
as analytical functions of α . This result gave the first 
column ( CT  response) of [L] . Pitt numerically evaluated 
the roll and pitch moment response, matching the exact 
values for axial and edgewise flow, and from these results 
identified analytical functions of α  for the moment terms 
in [L] . The results for the three-state dynamic inflow 
model were: 
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(table 4 of reference 87). In summary: 

“An actuator-disc theory has been used to obtain 
gains and time constants (i.e. the L  and M  
matrices) for both 3-degree-of-freedom and 5-
degree-of-freedom dynamic-inflow models. … In 
axial flow (e.g. hover), the gains are identical to 
those obtained from simple momentum theory. 
… The apparent mass terms (the M matrix) for 
the simplest pressure distributions are identical to 
the apparent mass terms of an impermeable disc, 
but these values vary significantly with lift 
distribution.” 

Thus, Pitt and Peters constructed the unsteady, actuator-
disk theory that is the basis of dynamic inflow models of 
the rotor wake. 

Gaonkar and Peters (refs. 111–112) summarized dynamic 
inflow research, and the verification of the Pitt and Peters 
model, by comparison of hingeless rotor response 
measurements (particularly the data from reference 96), 
both static and dynamic, in hover and in forward flight. 

ROTOR AERODYNAMIC STATE 

 
Experimental evidence for the existence of a rotor 
aerodynamic state was found by William G. Bousman of 
the U.S. Army in a test of the ground resonance stability 
of a model rotor (ref. 113). Theoretical work “had 
suggested ways in which aeroelastic coupling of various 
rotor degrees of freedom could be used to stabilize the 
lead-lag regressing mode and obviate the need for rotor 
lead-lag dampers.” The stabilizing effect of pitch-lag and 
flap-lag structural coupling was promising. “An 
experimental program was undertaken with a relatively 
simple, small-scale model rotor and fuselage to examine 
helicopter aeromechanical instabilities.” The principal 
objective was to explore the potential for pitch-flap 
coupling, flap-lag structural coupling, and matched flap 
and lag stiffness to stabilize the rotor regressive lag mode. 
In an earlier test (ref. 114), “nonlinear damping in the 
gimbal ball bearings prevented adequate measurements of 
the body mode damping.” Thus, “the gimbal frame was 
redesigned to replace the ball bearings with flexural 
pivots,” resulting in small, nearly constant, pitch and roll 
damping. 

The model used was a 1.62-meter-diameter, three-bladed 
hingeless rotor, supported in a gimbal frame that allowed 
pitch and roll motion (fig. 37). “The rotor was designed so 
that most of the blade flexibility is concentrated in root 
flexures” (ref. 113). Five rotor configurations were tested: 
nonmatched stiffness rotor (configuration 1) and matched 
stiffness rotor (configuration 4); each with negative pitch-
lag coupling; and the nonmatched stiffness with negative 
pitch-lag coupling and structural flap-lag coupling. 
Matched stiffness (equal nonrotating flap and lag 
stiffness) was obtained by increasing the stiffness of the 
flap flexure. Hence configuration 4 could generate larger 
hub moments, resulting in larger participation of inflow 
states. 

The model was tested in hover, at zero collective. “A 
shaker was used to oscillate the model about its roll axis” 
in order to excite the lead-lag regressing mode — and any 
other low-damped modes that could be excited. “The body 
modes were excited by deflecting the model in either pitch 
or roll using a system of strings and pulleys.” From the 
free decay of the system, the frequency and damping of 
the flap, lag, and body pitch and roll modes were 
measured as a function of rotor rotational speed. 
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Figure 37. Overall view of model (ref. 113). 

 

Bousman, a very careful experimentalist, found more than 
he was looking for. The experimental method found all 
modes that could be excited, not just the regressive-lag 
and body modes. Thus, Bousman was able to identify an 
aerodynamic state or inflow mode in the measured data. 
This constitutes unique experimental evidence that the air 
about the rotor (the wake) behaves as characterized by 
dynamic inflow states. 

The experimental observation is illustrated in figure 38, 
which shows the measured modal frequencies for 
configuration 4 (matched stiffness) as a function of rotor 
speed, and calculations made without a dynamic inflow 
model. The frequency and damping of the regressive lag 
model (ζ R ) was accurately calculated. The three other 
measured modes did not correspond to the calculations at 
all. The damping of the roll mode (φ ) was overestimated, 
the frequency of the pitch mode (θ ) underestimated, and 
the calculated damping of the flap regressive mode ( β R ) 
was so high that it should not have been observable in the 
test. For configuration 1 (lower flap stiffness), the 
frequencies were reasonably well predicted without a 
dynamic inflow model, but the pitch and roll mode 
damping were overestimated. 

 

 

Figure 38. Modal frequencies as a function of rotor speed 
for configuration 4, matched stiffness: comparison of 
measurements (points) and CAMRAD calculations 
without inflow dynamics (ref. 115). 

 

Bousman hypothesized that the differences between 
measured and calculated results were attributable to the 
influence of inflow dynamics. Reference 113 concluded 
that for configuration 1, “it was suggested that the 
deficiency in damping was due to the inflow dynamics.” 
For configuration 4, “correlation of theory and experiment 
for the body modes was poor, and it was suggested that 
this was due to the effect dynamic inflow had on the 
damping of the flap regressing mode.” 

The frequency and damping for both matched and 
nonmatched stiffness configurations can be predicted well 
by including the three-state dynamic inflow model in the 
analysis, as illustrated in figure 39. The implication is that 
because of the organization of the wake, the air responds 
as a whole to the motion of the rotor, a response well 
described by the loading derivatives and time lag of 
simple dynamic inflow models. 
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Figure 39. Modal frequencies as a function of rotor speed 
for configuration 4, matched stiffness: comparison of 
measurements (points) and CAMRAD calculations 
with inflow dynamics (ref. 115). 

 

BEAM THEORY 

 
Beam theory for elastic rotor blades was presented in first-
order (linear) form by Houbolt and Brooks (ref. 116), and 
in second-order (nonlinear) form by Hodges and Dowell 
(ref. 117). An adequate structural model is essential for 
the prediction of loads and stability, and hence has a direct 
influence on the weight and design. Rotor blades almost 
universally have a high structural-fineness ratio and, thus, 
are well idealized as beams. The complexities of rotation, 
and now multiple load-paths and composite construction, 
have resulted in extensive and continuing efforts to 
develop appropriate beam models for the solution of rotor 
problems. 

Preceding Houbolt and Brooks, there was notable early 
work on beam theory for rotor blades at Polytechnic 
Institute of Brooklyn (ref. 118); at Kellett Aircraft 
Corporation (refs. 119–120); at CAL (refs. 121–122); at 
NACA (refs. 123–124); and at MIT (ref. 125). 

Houbolt and Brooks 

John C. Houbolt and George W. Brooks of NACA 
brought together beam theory for bending and torsion 
deflection of rotor blades (ref. 116): 

 

 

 

Figure 40. Case of coupled bending-torsion of twisted 
rotating beam (ref. 116). 

 

 

“The differential equations of motion for the 
lateral and torsional deformations of twisted 
rotating beams are developed for application to 
helicopter rotor and propeller blades. No 
assumption is made regarding the coincidence of 
the neutral, elastic, and mass axes, and the 
generality is such that previous theories 
involving various simplifications are contained as 
subcases to the theory presented in this paper. … 
The specific purpose of the paper is to develop 
the differential equation of deformation of the 
blade under the action of various applied loads. 
The development is made along the principles of 
“engineering” beam theory, and secondary 
effects, such as deformation due to shear, are not 
included.” 

Figure 40 illustrates the model. 

The principal assumptions were single load-path, 
permitting determination of the tension directly from the 
centrifugal force; isotropic material; and structural and 
inertial terms retained only to first order in bending and 
torsion deflection. The final differential equations were 
presented as: 
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Thus, they started the practice of underlining terms not 
included in previous theories. Beginning another practice, 
“as a check on the derivation presented herein, the 
differential equations of equilibrium were derived by a 
completely different approach that involves energy 
principles.” 

Later Houbolt would make a major contribution to 
NASA’s Apollo program by recognizing the significant 
weight savings possible using the lunar mission model 
called lunar-orbit rendezvous (LOR) instead of direct 
ascent or earth-orbit rendezvous, and aggressively 
promoting it until LOR was chosen in 1962 as the way to 
the moon (refs. 126–127). He received the NASA Medal 
for Exceptional Scientific Achievement on October 1, 
1963, the citation of which reads: 

“For his foresight, perseverance, and incisive 
theoretical analysis of the concept of Lunar Orbit 
Rendezvous, revealing the important engineering 
and economic advantages that have led to its 
adoption as a central element in the United States' 
Manned Lunar Exploration Program.” 

Houbolt was Associate Chief of the Dynamic Loads 
Division at NASA Langley Research Center in 1961–
1962, and was still contributing to rotorcraft 
aeromechanics (ref. 128). 

Hingeless rotors 

By the end of the 1960s, the hingeless rotor was maturing 
rapidly (fig. 41).  In the United States, the Lockheed XH-
51A had undergone successful flight tests since November

1962 (ref. 129) and was even used as a basis for stopped-
rotor concepts in full-scale wind tunnel tests during 1965–
1966 (ref. 130). The U.S. Army was engaged with 
Lockheed in developing the AH-56A Cheyenne 
compound helicopter (ref. 131). Lockheed won the 
Advanced Aerial Fire Support System (AAFSS)  
competition in 1965, and the AH-56A first flight occurred 
September 1967. The Cheyenne was installed in the 
NASA 40- by 80-Foot Wind Tunnel at Ames Research 
Center in September 1969 with the objectives of 
investigating performance and dynamics issues. The 
objectives were not met because incorrect feedback to the 
control gyro resulted in destruction of the aircraft 
(ref. 132). The Messerschmitt–Boklow–Blahn (MBB) Bo-
105 was developed in Germany, with first flight in 
February 1967 and certification in 1970 (ref. 133). In 
England, the Westland Lynx first flight occurred in March 
1971 (ref. 134). 

As usual, invention led analysis. The Cheyenne, Bo-105, 
and Lynx were developed using relatively simple rotor 
dynamics models (refs. 132, 136, and 137). Dynamics 
issues with the Cheyenne demonstrated the need for 
analysis development (ref. 131). 

There was notable work on beam theory by Mil’ 
(ref. 137), at CAL (refs. 138–139), at Sikorsky (ref. 140), 
and at Westland Helicopters (ref. 136). The development 
of the Bo-105 and the Lynx was accompanied by an 
understanding of the torsion-bending coupling arising 
from nonlinear structural dynamics of hingeless rotors 
(refs. 135–136). Bending deflections can result in a 
torsion moment component of trim bending moments 
(fig. 42), leading to effective pitch-lag and pitch-flap 
couplings that significantly influence blade stability and 
aircraft flight dynamics. 

Developing even a theory of the stability of the flap and 
lag motion of a hingeless rotor proved difficult. Young 
(ref. 141) published work on nonlinear elastic flap-lag 
motion, concluding: “The theory predicts the possibility of 
unstable blade flapping motion at all flight speeds. This is 
a result of a nonlinear coupling of fundamental flapwise 
and chordwise motions in an unstable, regenerative 
manner.” Based on approximate stability criteria, Young 
predicted that high-load-factor, low-speed maneuvers 
would destabilize a rotor with either rigid or semi-rigid 
blades; and as speed and power increased, all rotor types 
would lose stability. The critical conditions for stability 
were comparable to those associated with retreating tip 
stall. Thus, (ref. 141): 
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Lockheed XH-51A helicopter 

 

XH-51A stopped rotor test 

 

Lockheed AH-56A Cheyenne compound helicopter 

 

AH-56A in wind tunnel 

 

MBB Bo-105 helicopter 

 

Westland Lynx helicopter 

 

Figure 41. Hingeless rotor helicopters. 
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Figure 42. Flap-lag-torsion coupling on rotor blades 
(ref. 135). 

 

 “The important implication of the theory is that 
full scale rotors do not actually stall, but enter a 
regime of continuously unstable, but non-
divergent, non-destructive limit cycle behavior. 
… A second important implication of the theory 
is that in high speed flight, powered, partially 
unloaded rotors of current design practice, will 
be subject to violent and possibly destructive 
instability.” 

These “implications” generated discussion. Young 
(ref. 142) wrote: “I believe it is worth noting at the outset 
that I have discussed the subject paper in correspondence 
and in person with numerous individuals and groups over 
the extended period of time since its publication.” Berman 
and McIntyre (ref. 142) wrote a long critique, which 
begins: “the author presents a theory which would, if 
correct, virtually preclude further development of the high 
speed helicopter.” They maintained that the implication 
regarding stall was not supported by experimental data— 
the flow on rotor blades does separate—and that the 
implication regarding instability did not agree with results 
from numerical integration of the equations. They found 
“numerous errors of analysis and interpretation in the 
paper completely invalidate the theory,” criticizing the 
approximate assessment of stability and various details of 
the equations. Young replied in equal length (ref. 142): 
“My objective was and is to provide needed visibility for 
substantive technical issues; I trust that with proper 
perspective it will be evident that their critique was ill-
considered and is erroneous in all its important 
particulars.” The editors of the journal (Ellis and Loewy) 
felt it was necessary to conclude this exchange with a 
confirmation of the value of publishing controversial 
papers and providing a forum to discuss them. 

No doubt  most of the controversy generated by Young’s 
paper was over the suggestion that what had been 
interpreted as retreating blade stall was actually a flap-lag 
limit cycle instability, but attention was transferred to the 
question of the proper equations for the nonlinear flap and 
lag motion. Hohenemser (ref. 143) wrote a short note 
attempting to correct some of the approximations, and 
ended with “the writer is preparing a paper which 
hopefully will be free of inaccuracies such as in 
[ref. 141].” Young’s reply (ref. 143) was also short, but 
included: 

“The constructive interest evidenced by 
Dr. Hohenemser’s letter and the paper which he 
is preparing on the subject of coupled blade 
flapping and lead-lag motion is most welcome. I 
look forward to the publication of this paper with 
keen interest. We are in agreement that the 
occurrence of such instabilities is a very real, 
rather than a remote possibility. Further, I agree 
that there is a need for a fresh, lucid exposition 
free of inaccuracies. That this is not an easy task 
is illustrated by the fact that I find that his 
present, abbreviated technical exposition 
overlooks several fundamental points and is also 
inconsistent with the results of flight tests.” 

Hohenemser and Heaton (ref. 144) presented a careful 
derivation and an analysis of the linearized, second-order 
equations of flap-lag motion. A rigid blade with flap and 
lag flexures was used to represent a hingeless rotor. They 
concluded that “in a rotor without lag hinges, second order 
flap-lag coupling is an important issue and must be 
carefully evaluated in any rational dynamic rotor design.” 
Comparing results to those obtained by Young, they found 
significant differences attributed to inconsistencies in the 
linearization and approximations in the stability criterion. 
However, reference 144 had an error in the treatment of 
the effect of lag motion on the inplane velocity for the 
aerodynamic model. 

It was left to Ormiston and Hodges (ref. 145) to present a 
really careful derivation of the flap-lag equations of 
motion, as well as a thorough exploration of the influence 
on blade stability of parameters such as thrust, flap and lag 
frequency, pitch-lag coupling, and structural flap-lag 
coupling. Regarding the original issue of hingeless rotor 
stability, the importance of nonlinear inertial, structural, 
and aerodynamic terms was clear. It was concluded that 
instabilities were possible, largely due to pitch-lag or 
pitch-flap coupling, and that flap-lag structural coupling 
was potentially stabilizing. 
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Ames Directorate, USAAMRDL 

Motivated by the government and industry activities in 
hingeless rotor development, particularly the AH-56A 
Cheyenne development, the Ames Directorate of the U.S. 
Army Air Mobility Research and Development 
Laboratory (USAAMRDL) (later Aeroflightdynamics 
Directorate at Ames Research Center) initiated a program 
of theoretical and experimental research in rotor 
dynamics. 

Robert A. Ormiston came to Ames Research Center in 
February 1968 after conducting PhD research on the 
aerodynamics of a sailwing at Princeton University, where 
Professor Earl Dowell read his thesis. Although his 
original assignment at Ames was aerodynamics, all the 
problems and all the questions attracted him to rotor 
dynamics; he was in the control room of the 40- by 80-
Foot Wind Tunnel at the time of the Cheyenne accident. 
Dewey Hodges joined the Army laboratory in June 1970, 
David Peters in September 1970, and William Bousman in 
October 1970. I also joined the Army Laboratory in 
October 1970, but was at the 40- by 80-Foot Wind Tunnel 
branch. Ormiston, Hodges, and Peters began a systematic 
development of a theoretical basis for hingeless rotor 
blade stability and dynamics. Bousman began a series of 
careful experiments to provide data that would guide and 
substantiate the analysis. 

Dewey Hodges worked at Ames as a summer student from 
1970 to 1972, and part-time the rest of the year while 
working on his PhD at Stanford University. In their initial 
collaboration, Ormiston and Hodges derived the equations 
for rigid flap and lag motion of a blade, Ormiston using 
Newtonian and Hodges using Lagrangian methods. Their 
first efforts produced different equations, traced to 
different assumptions about whether the flap and lag 
springs rotated with collective pitch. Out of this, Ormiston 
developed a useful simulation of variable elastic coupling 
by introducing springs both inboard and outboard of the 
pitch rotation (ref. 145). 

Ormiston asked Hodges to work on elastic flap-lag-torsion 
equations of a rotor blade, including effects of 
nonlinearity. Peters had passed on the opportunity, but 
later became interested in the kinematic issues (authoring 
the appendix of reference 117). Hodges’ work became his 
PhD thesis (ref. 146), and the basis of further 
developments in 1972–1973 (refs. 147–148) on elastic 
bending and bending-torsion stability of rotor blades. 

During 1970–1972, Ormiston sponsored work by 
Pin Tong at MIT on hingeless rotor dynamics. Professor 
Tong investigated the stability of the flap-lag equations 

using perturbation methods (ref. 149), while his student 
Peretz P. Friedmann developed a model for bending-
torsion motion of elastic blades (refs. 150–152). In 1972, 
Friedmann and Hodges both received their doctorates on 
the subject of elastic blade dynamics. Reference 152 did 
generate an exchange of letters with Ormiston and Hodges 
(ref. 153), quite professional in tone, absent the rancor that 
often seems to characterize exchanges between rotary-
wing dynamicists. 

Hodges was working full-time at Ames in 1973. Professor 
Earl H. Dowell of Princeton spent the summers of 1972 
and 1973 at Ames, at the invitation of Ormiston. At 
Ormiston’s suggestion, Dewey Hodges and Earl Dowell 
began work to develop a more rigorous derivation of the 
nonlinear bending-torsion equations of motion for a rotor 
blade. During this time there were interactions with Dave 
Peters regarding the kinematics. During a visit by Hodges 
to Princeton in 1973, they resolved issues associated with 
the consistent ordering within the two approaches and the 
basis of the equations resulting from the Newtonian 
derivation. The draft of reference 117 was completed in 
late 1973. 

Hodges and Dowell 

Dewey H. Hodges of the U.S. Army and Earl H. Dowell 
of Princeton University developed “a more complete and 
general nonlinear theory” of the elastic bending and 
torsion of rotor blades (ref. 117): 

“The theory is intended for application to long, 
straight, slender, homogeneous, isotropic beams 
with moderate displacements and is accurate to 
second order based on the restriction that squares 
of bending slopes, twist, t/R , and c/R are small 
with respect to unity. … 

The equations of motion are derived by means of 
two complementary methods: the variational 
method based on Hamilton’s principle, and the 
Newtonian method based on the summation of 
forces and moments acting on a differential blade 
element. Both methods used together help ensure 
a more accurate and consistent treatment of 
the nonlinear terms. The important nonlinear 
strain-displacement relations, required for both 
methods, are developed from a classical 
definition of strain and simplified in accordance 
with the premise of a long, slender beam subject 
to moderate displacements.” 

The derivation by the variational method was largely the 
work of Hodges, and the derivation by the Newtonian 
method was largely the work of Dowell. 
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Figure 43. Undeformed coordinate systems, elastic 
displacements, and resultant forces and moments 
(ref. 117). 

 

Reference 117 summarized the evidence regarding the 
importance of nonlinearities in rotor blade dynamics: 
inertial nonlinearities in flap-lag dynamics, based on rigid 
blade models (ref. 145) or elastic models (ref. 147); 
structural bending-torsion nonlinearities (Huber, ref. 135); 
and elastic bending-torsion coupling in the torsion 
equation (Mil’, ref. 137). 

Figure 43 illustrates the model. A single load-path was 
assumed, permitting elimination of the axial extension 
variable. A systematic, self-consistent approach was 
developed for determining which terms in the equations to 
retain and which to ignore. From reference 117: 

“In deriving a nonlinear system of equations, it is 
necessary to neglect higher-order terms to avoid 
overcomplicating the equations of motion. When 
neglecting terms within a large system of 
equations, care must be exercised to ensure that 
the terms retained constitute self-adjoint 
structural and inertial operators. These self-
adjoint operators lead to symmetric stiffness and 
mass matrices and an antisymmetric gyroscopic 
matrix in the modal equations.” 

In particular, it was assumed that with bending and torsion 
deflections and cross-section dimensions all order ε , the 
extension and section warping were order ε 2 . This 
approach, and the assumptions made regarding order of 
various quantities, formed the basis for future extensions 
as well. The final differential equations were presented as: 

 

 

with new and important terms underlined. Hodges and 
Dowell concluded (ref. 117): 

“In the resulting system of equations, several 
important nonlinear terms are identified. First, 
the centrifugal term proportional to lead-lag 
velocity in the tension equation combines with 
the centrifugal coupling terms in the bending 
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equations to produce nonlinear flap-lag inertial 
terms. The longitudinal velocity in the lead-lag 
equation, a Coriolis terms, is expressed in terms 
of bending quantities as another nonlinear flap-
lag inertial term. These terms, when linearized 
with respect to equilibrium, are antisymmetic 
gyroscopic terms and significantly influence 
hingeless rotor stability and forced response 
phenomena. Second, the nonlinear bending-
torsion coupling term in the torsion equation is 
written in a form similar to the one identified by 
Mil’ in [ref. 137]. The twisting moment arises 
from bending in two directions and is 
proportional to the difference in bending stiffness 
and the product of curvatures. The counterpart 
nonlinear bending-torsion coupling terms in the 
bending equations appear in the form of a change 
in elastic coupling due to elastic twist. These 
bending-torsion coupling terms are also 
important in determining the aeroelastic stability 
of hingeless rotors.” 

Work exploring the dynamic stability and response of 
elastic rotor blades (refs. 154–156) followed, based on the 
equations of motion developed in reference 117. 

After Hodges and Dowell 

Subsequent to Hodges and Dowell, there were numerous 
investigations devoted to extending the equations of 
motion, either to higher order or with different ordering 
assumptions. Always the new terms in the equations were 
underlined, or double- or triple-underlined. The resulting 
equations grew ever more complicated. In the 1980s, 
beam models were developed using exact kinematics 
(notably refs. 157–158), and introducing implicit 
formulations. 

Development of beam models for anisotropic or 
composite materials was a key step (refs. 159–162). Finite 
elements are needed to model the complexity of rotor 
structures and finite-element models were developed for 
rotor blade analysis in the early 1980s (refs. 163–172). 
Multibody dynamics technology is needed to model the 
mechanisms found in rotors (refs. 173–179). Finite 
element and multibody dynamics modeling capability, 
including input-driven definition of the geometry, was 
fully integrated into comprehensive analysis with the 
introduction of CAMRAD II (ref. 180) and DYMORE 
(ref. 181). 

With the development of rotor models combining finite 
elements and multibody dynamics, large rigid-body 
motion of small individual elements can be handled with 
exact kinematics. Then, for most problems of rotor 

dynamics, the second-order model of Hodges and Dowell 
is satisfactory for the motion within the element. 

Finite elements 

The use of finite elements in rotor blade analysis is crucial 
to modeling the true complexity of the mechanical and 
structural systems being presented by designers. The use 
of finite-element techniques to obtain free vibration modes 
of rotor blades is not uncommon (e.g., refs. 163–164). 
Friedmann and Straub (refs. 165–167) discretized the 
partial differential equations of a rotor blade using a local 
Galerkin method of weight residuals. While recognizing 
that “the finite element method is ideally suited for 
modeling the complicated and redundant structural system 
encountered in bearingless rotors” (ref. 165), they 
considered the equations of a single load-path rotating 
beam. They were particularly motivated by “the 
significant reduction in algebraic manipulative labor when 
compared to the application of the global Galerkin 
method” (ref. 165). 

Borri, Lanz, and Mantegazza (refs. 168–169) developed 
an analysis with the “blade motion represented by finite 
elements in space-time domain,” based on Hamilton’s 
variational principle. The papers specifically focused on 
the time-finite-element development, and observed the 
advantage of leaving the integration problems and tedious 
algebraic manipulations to the computer. Hodges and 
Rutkowski (ref. 170) applied variable-order finite 
elements to blade analysis. Sivaneri and Chopra (ref. 171) 
analyzed the bending-torsion stability of a rotor blade 
using “a finite element formulation based on the principle 
of virtual work.” The subject was still a single load-path 
configuration, with the extension displacement eliminated 
by substitution using the centrifugal force. 

Application of the finite-element method to a bearingless 
rotor was finally made by Sivaneri and Chopra (ref. 172). 
“The finite element formulation allows the multibeams of 
the flexure to be considered individually. The multibeams 
of the flexure and the single beam of the outboard are 
discretized into beam elements, each with fifteen nodal 
degrees of freedom.” With multiple load-paths, “the 
distribution of the centrifugal force in the multibeams of 
the inboard blade is not known a priori and hence the axial 
deflection can not be eliminated.” Cubic shape functions, 
hence linear moment, were used for bending; quadratic 
shape functions, hence linear moment, for torsion; and 
cubic shape functions, hence quadratic tension, for 
extension. Thus, the 15 nodal degrees of freedom (fig. 44) 
consisted of flap and lag bending displacement and slope 
at each end of the element, torsion at the ends and one 
midpoint, and extension at the ends and two midpoints. 
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Figure 44. A finite element showing nodal degrees of 
freedom (ref. 172). 

And multibody dynamics 

Flexible and accurate modeling of the mechanisms that 
comprise the hub, blade root, and control system of rotors 
requires the technology of multibody dynamics. The 
combination of finite elements and multibody dynamics 
was brought to rotorcraft by Dewey H. Hodges and his 
colleagues who, in a project extending from April 1980 to 
September 1985, developed GRASP (General Rotorcraft 
Aeromechanical Stability Program). As described in 
reference 173: 

“GRASP is a general-purpose program which 
treats the nonlinear static and linearized dynamic 
behavior of rotorcraft represented by arbitrarily 
connected rigid-body and beam elements. … The 
basic approach which provides the foundation for 
large relative motion kinematics is derived from 
“multibody” research with an expanded emphasis 
on multiple levels of substructures. This is 
combined with the finite-element approach which 
provides flexible modeling through the use of 
libraries of elements, constraints, and nodes.” 

In a series of papers in 1987, they described the 
methodology (ref. 174), the analysis (ref. 175), and its 
applications (refs. 176–177). The code “was developed to 
perform aeroelastic stability analysis of rotorcraft in 
steady, axial flight and ground contact conditions” 
(ref. 175) and, thus, was implemented with a limited 
aerodynamic model applicable only to hover and axial 
flow. 

 

Figure 45. Detailed multibody representation of a rotor 
system (ref. 181). 

 

An interesting development was the application of the 
general purpose multibody system analysis tool ADAMS 
(from Mechanical Dynamics, Inc.) to rotary-wing 
aeroelastic problems by Elliott and McConville (ref. 178). 
Bauchau and Kang (refs. 179) implemented and validated 
“a multibody formulation for helicopter nonlinear 
structural dynamic analysis” (fig. 45), focusing on the 
appropriate coordinates to represent the element motion 
and development of the corresponding constraint 
equations. Although no aerodynamic model was included, 
the method was applied to the problem of ground 
resonance. 

MULTIBLADE COORDINATES 

 
Multiblade coordinates (MBC) were introduced to rotor 
dynamics analysis by Robert P. Coleman and fully 
developed by Kurt H. Hohenemser. MBC are fixed-frame 
variables (β 0 , β nc , β ns , β N / 2 )  obtained by a linear 
transformation of rotating frame variables β (m ) : 

βo = 1

N
β (m)

m=1

N
βnc = 2

N
β (m ) cos nψm

m=1

N
βns = 2

N
β (m) sin nψm

m=1

N
βN / 2 = 1

N
β (m) (−1)m

m=1

N
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and the inverse 

β (m) = β0 + (βnc cosnψm + βns sinnψm)
n

 + βN / 2 (−1)m  

for N  blades, equally spaced ( Δψ = 2π /N ) around the 
azimuth at ψm = ψ + mΔψ = Ωt + mΔψ . The blade index 
m ranges from 1 to N . The summation over harmonic 
index n  goes from n = 1 to (N −1) /2  for N  odd, and 
from n = 1 to (N − 2) /2 for N  even. The reactionless 
degree of freedom βN / 2  appears in the transformation 
only if N  is even. This notation is from reference 11. 
Appropriate notation proved elusive in the development of 
MBC. 

The use of MBC is crucial for problems involving the 
rotor motion coupled with the fixed frame, such as hub 
motion, swashplate control, or dynamic inflow. MBC are 
a physically relevant, nonrotating frame representation of 
the rotor motion; for example, coning and tip-path plane 
tilt for blade flapping. Consequently, introduction of MBC 
separates the coupling of the rotor and fixed frame into 
subsets and, most importantly, eliminates periodic 
coefficients (except for two-bladed rotors). MBC also 
reduce the periodicity of the equations resulting from 
edgewise flight aerodynamics. 

In developing the equations of motion for ground 
resonance of a rotor with three or more blades, Coleman 
(ref. 27) notes “a proper choice of coordinates leads to 
equations with constant coefficients.” For an n -bladed 
rotor, each blade with lag degree of freedom βk  ( k = 0  to 
n −1), he introduced “special linear combinations of the 
hinge deflections”: 

θ j = bi

n
βke

ijαk

k= 0

n−1
ζ k = θke

iωt
 

where b is the distance from the lag hinge to the blade 
center of mass, α = 2π /n  is the inter-blade spacing, and 
ω  is the rotor rotational speed. Coleman also gives the 
inverse transformation, from θ j  to βk . The θ j  variables 
represent the hinge motion in the rotating coordinate 
system, while the ζ k  variables are in the fixed system. 
“Geometrically, θ1 or ζ1 is the complex vector 
representing the displacement due to hinge deflection of 
the center of mass of all the blades.” Only ζ1 couples with 
the inplane shaft motion. “The physical meaning of this 
partial separation of variables is that a blade motion 
represented by ζ1 involves a motion of the common center 
of mass of the blades and, thus, a coupling effect with the 
pylon. Blade motions in which the common center of mass 
does not move are represented by ζ 2 , … ζ n ”. The 

variables ζ 0  and ζ1 are recognized now as the mean and 
first-harmonic multiblade coordinates: 

ζ 0 = θ 0 = biβ0

ζ1 = θ1e
iωt = bi

2
(β1c + iβ1s)

 

(using ζ k = θ ke
ijωt  for higher harmonics). Coleman used 

complex combinations of the lag degrees of freedom and 
the shaft-motion degrees of freedom to facilitate 
derivation and solution of the ground resonance equations. 

Thus, Coleman recognized the physical relevance of 
MBC, the separation of the coupling of rotor and shaft 
motion, and the fact that MBC lead to equations with 
constant coefficients. Unfortunately, the character of the 
MBC was obscured by the use of complex coordinates. 

Miller (ref. 182) conducted an evaluation of the stability 
and control characteristics of several different types of 
helicopters, in which MBC were used for the blade flap 
motion. From reference 182: 

“The equations of motion will be derived by 
considering the displacement of the helicopter 
and its blades relative to a system of axes fixed in 
space. … x  is the displacement at any time t of 
the rotor hub in the X  direction and α1 , β1, the 
corresponding angular displacements of the 
helicopter and tip path plane. … The blade 
flapping may be expressed as 

βψ = β0 + β1 cosΩt + β2 sinΩt  

higher harmonics of flapping having no effect on 
the stability of the helicopter as a whole. β1 and 
β2  are functions of time. β0  is constant since the 
thrust is constant.” 

Thus, β1 and β2  were the longitudinal and lateral tip-path 
plane tilt relative to space, while β1 − α1 and β 2 − α 2  
were the tip-path plane tilt relative to the hub. The 
rotating-frame-flap equation of motion was derived from 
equilibrium of inertial, aerodynamic, and hinge spring 
moments. Then the fixed-frame-flap equations were 
obtained by separately setting the coefficients of unity, 
cos Ωt , and sin Ωt  to zero. Citing Coleman (ref. 27), 
Miller also used complex combinations of variables for 
the airframe inplane and angular motion and the rotor flap 
motion, to reduce the number of equations from 6 to 3. 

Grodko (ref. 183) in the ground resonance chapter of 
Mil’s book cited Coleman, but used MBC instead of 
Coleman’s variables: 
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“Investigations conducted by Coleman [ref. 27] 
and B.Ya. Zherebtsov showed that, for a rotor 
with a number of blades n ≥ 3, this system of 
equations can be reduced to a system of linear 
equations with constant coefficients, if we 
replace [the lag variables] ξ k (t)  by new 
variables xc (t)  and zc (t)  representing the 
coordinates of the center of gravity of the blade 
system.” 

The coordinate transformation used was: 

ζ = ξk cosψk
k=1

n
η = ξk sinψk

k=1

n
. 

The work presented the corresponding transformation for 
the time derivatives of ξ k (t)  and the approach for 
transforming the equations of motion. 

Young and Lytwyn (ref. 184) used MBC in an 
examination of the dynamic stability of low disk loading 
propeller-rotors. The motion analyzed consisted of nacelle 
pitch and yaw degrees of freedom, plus flapping freedoms 
for an N -bladed rotor ( N ≥ 3). They noted that “the N  
blade freedoms are reduced to two quasi coordinates by 
observing that of all possible patterns of blade motion, 
only the two representing longitudinal and lateral tilting of 
the tip-path plane provide a possibility of an unstable 
coupling with the nacelle freedoms.” The quasi-
coordinates and corresponding quasi-generalized forces 
introduced were: 

βc = 2

N
βn cosψn

n=1

N βs = 2

N
βn sinψn

n=1

N
Qβc = 2

N
Qβn cosψn Qβs = 2

N
Qβn sinψn

. 

Using βc  and β s  for the first-harmonic coordinates is a 
start on good notation. 

Johnson and Hohenemser investigated tilting moment 
feedback control on a hingeless rotor (ref. 185). They 
defined cyclic pitch as θcyc = −θ I sinψk +θ II cosψk , and 
the feedback control 

Ý θ I = −k11 βk cosψk
k=1

n − k12 βk sinψk
k=1

n
Ý θ II = −k21 βk cosψk

k=1

n − k22 βk sinψk
k=1

n
 

where βk  is the flap degree of freedom of the k -th blade. 
Then it is observed (ref. 185): 

“Because of the inclusion of azimuth position, a 
two-axis resolution of the equations of motion 
is necessary. For this purpose the following 
definitions are made. 

βI = βk cosψk
k=1

n
βII = βk sinψk

k=1

n
 

… By use of the preceding expressions, the 
equations of motion in terms of the re-defined 
variables are obtained by first multiplying the 
blade equations of motion by cosψk , summing 
from k = 1 to n  and then making the appropriate 
substitutions. The process is then repeated for 
sinψk .” 

Thus, using Roman numeral subscripts “I” and “II” for the 
first-harmonic MBC followed from the nomenclature for 
cyclic control. 

Hohenemser and Yin introduced the terminology 
“multiblade coordinates” in the title and first sentence of 
refs. 186–187. They cited Coleman (ref. 27) and Young 
and Lytwyn (ref. 184), and then generalized MBC for an 
N -bladed rotor: 

“The multiblade coordinates represent collective 
flapping or coning, differential collective 
flapping (only for even bladed rotors), and cyclic 
flapping of various orders, defining tilting or 
warping of the rotor plane. 

The flapping angle βk  of the k -th blade in terms 
of multiblade flapping coordinates is 

βk = β0 + βd (−1)k + β I cosψk + βII sinψk +
βIII cos 2ψk + β IV sin 2ψk + βV cos 3ψk +
βVI sin 3ψk + ...

 

where ψk = t + (2π / N )(k −1)  is the azimuth 
angle of the k -th blade. For an N -bladed rotor 
only the first N  terms are retained, whereby βd  
occurs only in even-bladed rotors.” 

Hohenemser and Yin give the inverse transformation, and 
describe the method for transforming the rotating frame 
equations of motion to the nonrotating frame. They also 
analyzed the periodic differential equations of flapping 
motion in edgewise forward flight using Floquet theory, 
and demonstrated the utility of the constant coefficient 
equations obtained by dropping periodic terms after 
applying the MBC transformation. 
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Figure 46. Rotor blade stability diagram (ref. 190). 

 

Figure 47. Regions of destabilization (ref. 194). 

Floquet theory 

Floquet theory is a subject that was often entwined with 
MBC in papers such as refs. 186–187, the connection 
being the periodic coefficients of rotor equations of 
motion, particularly with edgewise aerodynamics or two-
bladed rotors. Floquet theory is a numerical method for 
extracting the stability of a linear, periodic dynamic 
system in terms of eigenvalues and periodic eigenvectors, 
and was described as a numerical recipe in texts on linear 

systems in the 1960s (e.g., ref. 188). As a numerical 
solution method, Floquet theory was made practical by the 
digital computer, which made the study of the unique 
dynamic behavior of periodic systems possible. 

The prototypical problem of a periodic system in rotor 
dynamics is the solution of the equation of blade flap 
motion in edgewise flight. The stability of blade flap 
motion has been examined by numerous investigators 
(refs. 189–200), beginning with Glauert. The methods 
used included infinite determinant, perturbation 
expansions and successive approximations, and numerical 
integration and analog computation. Horvay (ref. 190) 
was the first to plot the frequency and stability regions on 
the parameter plane of Lock number (as n = γ /8) vs. 
advance ratio μ  (figs. 46–48). In 1970, Peters and 
Hohenemser (ref. 200) brought the digital computer to the 
task of implementing Floquet theory as an analysis tool 
(fig. 49). It proved to be a fast technique, although this 
investigation did not capture the order μ2 behavior of the 
1/rev region boundary at small μ  (figure 49). 

My recollection of the times is that, instead of 
appreciating the mathematics that describe how the world 
works, like physicists, we reveled in the strangeness of it 
all. 

 

 

 

Figure 48. Rotor blade stability diagram (ref. 196). 



44 

 

Figure 49. Damping levels of free-flapping blade 
(ref. 200). 

COMPREHENSIVE ANALYSIS 

 
The prototype of rotorcraft comprehensive analyses is the 
helicopter flight simulation computer program C81, which 
was developed by Bell Helicopter with major support 
from the U.S. Army. The complexity and 
multidisciplinary nature of rotorcraft aeromechanics 
problems demands a software tool called a comprehensive 
analysis: applicable to a wide range of problems 
(performance, loads, vibration, response, stability) and 
operating conditions (hover, cruise, maneuver), and a 
wide class of configurations (blades, hubs, rotors, 
aircraft), in all stages (research, conceptual design, 
detailed design, development) and all aspects (design, 
testing, evaluation) of the engineering process. The 
computer program C81 early on gave definition to the 
capabilities and expectations for such tools. The 
objectives as stated by Bennett in 1973 (ref. 201) were 
quite modern: 

“The development has followed certain 
guidelines. First, the analysis must describe a 
wide variety of helicopter configurations— 
single rotor, compound, tandem, or side-by-side; 
it must also cover a broad range of flight 
conditions—hover, transition, cruise, or high 
speed. The analysis must have a uniform texture; 
i.e., the level of complexity of the different 
phases (aerodynamic, dynamic, and rotor 
analysis) must be uniform. The program must be 
applicable to diverse types of analysis— 
performance, stability and control, or rotor loads. 
The program must be user oriented in terms of 
preparing the input data and interpreting the 
results. And finally, the output format must 

facilitate comparison with flight and tunnel test 
data.” 

The early development of C81 was described in reference 
202. The origin of C81 was attributed to Blankenship and 
Harvey (ref. 203), and Duhon, Harvey, and Blankenship 
(ref. 204). The prerequisite was the modern digital 
computer, first available at Bell Helicopter in 1959. Both 
of these early papers focused on the new experience of 
developing a computer program for engineering 
applications. Reference 203 devoted a paragraph to 
justifying the choice of a digital computer instead of an 
analog computer. “Based on this decision, a digital 
analysis for helicopter performance and rotor blade steady 
and oscillatory bending moments has been developed 
during the past three years and programmed for the IBM 
7070 as a company-sponsored project.” The model was 
restricted to level flight and single-main-rotor 
configurations, but extensions were considered straight-
forward. Key aspects of this first code were that it 
modeled the entire aircraft (not just the rotor) and covered 
both aerodynamics and structural dynamics, earning the 
description “comprehensive.” Reference 204 described a 
computer program for the analysis of maneuver 
performance and handling qualities characteristics, 
incorporating rotor aerodynamic modeling and blade load 
calculation as in reference 203. The program from 
reference 204 was extended and used to investigate 
rotorcraft gust response in 1965–1967 (ref. 205). During 
this work the first complete documentation of the software 
was prepared (ref. 206). From reference 205: “A digital 
computer program describes the rigid-body aircraft 
motions in space and gives an aeroelastic representation of 
two rotors.” The code was applicable to single-rotor, 
tandem, side-by-side, and compound configurations, with 
articulated, semi-rigid, and rigid rotors; and calculated 
trim and maneuvers, subject to gusts. For reference 207, 
the capability to model stop-fold rotor concepts was 
added. 

By 1967 (ref. 206), the code was called “Rotorcraft Flight 
Simulation Program” and designated C81. According to 
reference 202, “C81” doesn’t mean anything: “The C in 
C81 simply stood for computer program, and at the time 
the computing department assigned programs a number 
based on the order in which they were written.” For 
configuration control, Bell eventually adopted a different 
naming convention for codes, but C81 remained the 
common name and was considered the name of the 
program’s main routine. 
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Figure 50. U.S. Army helicopters in 1972. 
 

In 1972, two-thirds of the more than 15,000 helicopters in 
the U.S. Army inventory (fig. 50) had been manufactured 
by Bell Helicopter (ref. 208). It is not surprising, 
therefore, that the Eustis Directorate of the USAAMRDL 
sponsored Bell Helicopter in a series of major upgrades 
and extensions to C81 (refs. 209–211; apparently 
reference 209 was never actually published). U.S. Army 
support of C81 development continued into 1980 (refs. 
212–213). 

A notable technical step was the introduction of a modal 
model for elastic blades. According to reference 202: 

“With the 1971 release of the program, a fully 
time-variant aeroelastic rotor analysis was added. 
This feat was accomplished with the assistance of 
Professor N. O. Myklestad, who was a consultant 
to Bell Helicopter during the late 1960s. 
Myklestad played a pivotal role in the 
development of the fully coupled beam-chord-
torsion aeroelastic rotor analysis. Even today the 
elastic rotating beam analysis used to compute 
rotor blade modes is simply referred to as the 
Myklestad program.” 

Until reference 210, the codes used parametric equations 
to represent rotor blade section aerodynamic 
characteristics. Reference 210 introduced the capability to 
read airfoil tables, and included a built-in default table for 
the NACA 0012 airfoil. The C81 airfoil deck format 
consists of square (angle of attack and Mach number) 
array of data for lift, drag, and moment coefficients. The 
format is a fixed form designed for an IBM card: 10 
columns, each 7 characters wide. The C81 airfoil deck 
remains a useful standard for communicating airfoil table 
data between organizations and between codes. 

By 1973, the U.S. Army adopted C81 for rotorcraft 
simulation (refs. 214–215). The software was to be 
provided by Bell Helicopter to qualified users for design 
and analysis of rotary-wing aircraft (ref. 210). Reference 
215 stated: 

“As part of the Army’s effort to improve its 
capability to evaluate proposed rotary-wing 
aircraft and to advance helicopter technology, the 
Eustis Directorate has sponsored the 
development of computer math models to 
simulate all phases of helicopter flight. One such 
math model is the Rotorcraft Flight Simulation 
Program C-81, which is a generalized analysis 
that can encompass all of the basic rotorcraft 
configurations.” 

Reference 214 provided a summary of the code, and 
reference 215 described preparations for using large, 
complex computer programs in the Utility Tactical 
Transport Aircraft System (UTTAS) evaluation, including 
a dry-run aircraft evaluation conducted using C81. 
Proposals submitted for major aircraft development 
programs were required to include C81 input decks, 
beginning with the UTTAS (1972) competition and 
continuing through Light Helicopter Experimental (LHX) 
(1988). 

Several major efforts to correlate C81 calculations with 
test data were sponsored by the U.S. Army in the 1970s. 
The work covered AH-1G flight test, OLS flight test, and 
H-34  model data by Bell  Helicopter  (refs. 216–218),  
Bo-105 flight test data by Boeing (ref. 219), and H-53 and 
S-67 flight test data by Sikorsky Aircraft (ref. 220). The 
results were disappointing enough that the objective was 
stated as “to identify the strong and weak areas of C-81 
prediction capability, and to establish a state-of-the-art 
position with regard to the global computer program 
concept for helicopter analysis” (ref. 220). For the H-34 
model rotor correlation by Bell Helicopter (ref. 218): 
“Results are inconclusive due to problems related to three-
dimensional and/or unsteady effects, which are especially 
significant for model scale rotors and which are not fully 
understood in the state of the art.” The assessment of the 
capability of C81 to model the Bo-105 hingeless rotor 
(ref. 219) ranged from good correlation for trim and 
performance, reasonable for flap bending moments, 
poorer correlation for rotor chord and shaft bending 
moments, to poor agreement for response in pull-up and 
pushover maneuvers. The conclusions from the 
application of C81 to articulated rotors (ref. 220) were 
very strong: 

“This study did not indicate any significant 
increase in accuracy over other methods available 
for handling the disciplines covered by C81. 
While the ability to treat performance, stability 
and control, and rotor loads all within the same 
program has some advantages, in this case the 
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advantages appear to be offset by excessive 
running times required for performance and 
maneuver response problems. … The 
incorporation of the C81 program as an 
articulated rotor helicopter design tool over 
existing separate helicopter performance, 
handling qualities, and rotor loads analyses is not 
recommended.” 

Although partly based on modeling problems likely easily 
corrected (such as location of flap and lag hinges), the 
position against universal adoption of C81 was clear. The 
possibility that a comprehensive analysis developed by 
one helicopter company would become the standard tool 
throughout the industry was ill-conceived. Moreover, the 
C81 program “had grown difficult and unwieldy to 
upgrade and maintain,” and upgrades were not always 
successful (ref. 202). 

An Advisory Group for Aerospace Research and 
Development (AGARD) meeting held in Milan in March 
1973 (ref. 221) provided a snapshot of state-of-the-art 
rotor modeling, including papers from Kaman, Boeing, 
Aerospatiale, Sikorsky, Bell, Westland, MBB, and 
Lockheed. The experience of Carlson and Kerr at 
Lockheed (ref. 222) was to be a crucial factor in future 
developments, when both were leaders at the 
USAAMRDL. 

During flight test of the AH-56A, problems with rotor 
stability were encountered that required the support of a 
fully nonlinear model called Rotor Senior, which later 
became REXOR (ref. 223). From reference 224: “An 
interdisciplinary analytical model for total vehicle 
simulation, revised and extended rotor (REXOR) has been 
developed to provide a tool for predicting the flight 
envelope of rotary-wing aircraft in terms of performance, 
dynamic stability, handling qualities, and transient 
load limits.” Motivated by AH-56A development, the 
code started as a model of the entire aircraft. From 
reference 222: 

“An interdisciplinary analysis, which has grown 
out of a requirement for a nonlinear handling 
qualities evaluation tool, has been mechanized in 
a fashion which provides a capability to predict 
rotor loads affected by rotor/airframe interaction 
in steady-state and transient flight conditions.” 

This mechanization was accomplished by a loads 
specialist modifying the nonlinear handling qualities 
model for rotor loads calculations. Other specialists 
developed their own modifications, leading to a state with 
inconsistent versions, unwieldy data management, and a 

requirement to completely restructure the code. 
Recognizing the problems with this “traditional” code 
development approach, a new way was sought (ref. 222): 

“The modeling philosophy in developing the 
analysis combines the capabilities of a team of 
analysts from several specialties to create a 
versatile model which provides consistent data 
for numerous applications.” 

As described in reference 225, the new approach based on 
an analyst team dealt with model derivation, code 
structure, data management, checkout, and documentation. 
Reference 226 noted that Kerr recently “had the chance to 
implement the modeling approach outlined here by 
organizing an analysis team of specialists to update and 
restructure Lockheed’s interdisciplinary REXOR 
analysis.” 

C81 showed what could and should be done by a 
rotorcraft comprehensive analysis, defining requirements 
by the example of its capabilities and its deficiencies. 
Experience with C81 and REXOR emphasized the need 
for a model of the complete aircraft, not just a rotor 
analysis. Experience sponsoring and managing rotorcraft 
code development showed that new approaches were 
needed and were possible. This was the context in which 
the U.S. Army embarked on the development of 
2GCHAS, the Second Generation Comprehensive 
Helicopter Analysis System (refs. 227–228) in the late 
1970s. 

From there the path got complicated. The many branches 
of development have resulted in rotorcraft comprehensive 
analyses from government (2GCHAS, RCAS), helicopter 
industry (TECH02, COPTER, CRFM, HOST), academia 
(UMARC, DYMORE, MBDyn), and commercial sources 
(FLIGHTLAB, CHARM, CAMRAD II). 

COMPUTATIONAL FLUID DYNAMICS 

 
Advanced numerical aerodynamics today means 
Computational Fluid Dynamics (CFD). The quest is for an 
accurate first-principles solution for the flow about a 
helicopter rotor—three-dimensional, unsteady, vortical, 
compressible, viscous, and turbulent. The goal is accurate 
calculation of the performance, airloading, and noise of 
any rotor that can be built. As usual, rotation of the wing 
makes everything harder. In particular, modeling the 
returning wake demands an accurate computational 
domain over a volume with dimensions on the order of the 
rotor diameter, while also modeling flow features on the 
scale of the boundary layer and vortex core. I consider the 



47 

start of this quest to be the work by ONERA and the U.S. 
Army in 1982 on three-dimensional, unsteady analysis of 
lifting rotor blades (ref. 229). 

The first application of CFD to the rotary wing was the 
paper presented by Francis X. Caradonna and Morris P. 
Isom in January 1972 (ref. 230). They derived the 
rotating-frame equation for potential flow about a rotor 
blade and, from it, the equation for small disturbance, 
transonic flow. Only hover was considered, so the 
equations were steady in the rotating frame. Solutions 
were obtained for a non-lifting rotor with rectangular 
blades and 6%-thick biconvex airfoil sections. The results 
were extended to some nonrectangular planforms in 
reference 231. Isom (ref. 232) extended the derivation of 
the small-disturbance potential equation to forward flight, 
using a rotating and translating coordinate system and 
transonic scaling as appropriate for rotor blades. The 
derivation of full potential and small disturbance 
equations was summarized in reference 233. The 
unsteady, three-dimensional small disturbance equations 
were solved for a non-lifting, rectangular planform rotor 
at an advance ratio of μ = 0.4 (ref. 234). The difference 
between unsteady and quasi-steady results were 
significant, particularly in the decelerating flow of the 
second quadrant of the rotor disk. 

In the early 1970s, a Memorandum of Agreement (MOA) 
was initiated for collaborative work in rotorcraft 
aeromechanics between The French Aerospace Lab, 
ONERA, and the U.S. Army Aeromechanics Laboratory 
at Ames Research Center. The first engineer from 
ONERA to have an extended stay at the Army Laboratory 
was Jean-Jacques Philippe. Experimental and numerical 
research on rotor aerodynamics was a major task of the 
MOA. 

In 1975, ONERA conducted a test of an Alouette II tail 
rotor in the S2-Ch wind tunnel (fig. 51). The rotor and test 
results were described in refs. 235–237. The rotor had two 
blades, no twist, and symmetrical NACA sections. It was 
instrumented with 30 upper-surface pressure transducers 
at 3 tip radial stations. Rectangular planform and swept tip 
blades were tested with transonic tip flow at high-speed 
forward flight ( μ = 0.4 to 0.55), non-lifting. The resulting 
data proved to be crucial to establishing the validity of the 
CFD analyses being developed. Chattot and Philippe (ref. 
237) showed correlation with small disturbance 
calculations (fig. 52), and compared results from a number 
of researchers with these test data. 

To obtain data on a lifting rotor, ONERA tested a three-
bladed rotor in the S2-Ch wind tunnel (fig. 53). The rotor 
and test results were described in reference 238. The 
blades were articulated, with –12 degrees of twist and a 
solidity of σ = 0.137, and straight or swept-parabolic tips. 
There were pressure transducers at 3 tip radial stations. 
The rectangular planform blade was tested in hover and 
forward flight, for advance ratios up to μ = 0.43. 

J. J. Chattot of ONERA, while on assignment at the U.S. 
Army Aeromechanics Laboratory, extended the method of 
Caradonna and Isom for solving the transonic small 
disturbance equation, including application to nearly 
arbitrary planform (ref. 239). During this period, notable 
work was done at NASA on quasi-static, full-potential 
solutions (ref. 240), and at RAE on quasi-static, small-
perturbation solutions (ref. 241). Reference 238 
summarized the calculations of ONERA, U.S. Army, 
RAE, and NASA, compared with the non-lifting ONERA 
data. 

 

 

 

Figure 51. Rotor in S2 Chalais-ONERA wind tunnel for 
non-lifting tests (ref. 234). 
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Figure 52. Comparison between calculation and 
experiment for straight tip, non-lifting rotor at 
μ = 0.55 (ref. 237). 

 

 

Figure 53. Three-bladed rotor in S2 Chalais-Meudon wind 
tunnel for lifting tests (ref. 238). 

 

Francis X. Caradonna, Chee Tung, and Andre Desopper 
(ref. 229) presented calculations of the three-dimensional, 
unsteady, lifting flow on a rotor blade in forward flight, 
based on the transonic small-disturbance equations. The 
influence of the wake and the blade motion was accounted 
for by using an effective angle of attack in the blade 
boundary condition, calculated from a simple inflow 
model and the measured flapping and pitch control. The 
calculations were compared with the test data of reference 
238 (fig. 54). Desopper (ref. 242) presented further 
comparisons of calculations with lifting rotor test data for 
both rectangular and swept-tip blades. This was the start 
of complete simulation of rotor flows. Reference 242 was 
also the start of work on including blade motion and the 
rotor wake effectively in the computational model, as well 
as extending the physics modeled by the fluid equations. 

 

 

 

Figure 54. Comparison of measured and computed 
chordwise pressure distribution at different azimuth 
angles; μ = 0.39, CT /σ = 0.0665, r /R = 0.90  
(ref. 229). 

 

 

 

By the mid 1980s, solutions for rotor blade flow were 
published using the full potential equations (refs. 15–20) 
and the Euler equations (refs. 21–29). Solutions of the 
Navier–Stokes equations for rotors appeared in the late 
1980s (refs. 30–38). Numbers of publications on rotary-
wing CFD continue to grow: in my files, there are 51 
papers and reports in the 1970s, 191 in the 1980s, 392 in 
the 1990s, and 660 in the 2000s (fig. 55). Much work is 
still being done on Reynolds averaged Navier–Stokes 
(RANS) solutions of rotor flows, particularly for wake 
capture, turbulence and transition, separation and dynamic 
stall, full aircraft models, and tight coupling with 
structural dynamic solutions. 
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Figure 55. Publications on rotor CFD by year. 

CFD/CSD LOOSE COUPLING 

 
The interface between computational fluid dynamics 
(CFD) and computational structural dynamics (CSD), 
known as loose coupling, was developed by the author for 
a paper with Chee Tung and Francis X. Caradonna 
(ref. 243). CFD offers advances in modeling the complex 
aerodynamics of rotors, but for forward flight the solution 
must include the structural dynamic motion of the blades 
and trim of the aircraft. Typically, the latter tasks are 
handled using an existing rotorcraft comprehensive 
analysis (designated CSD for symmetry). The information 
exchanged between the CFD and CSD codes consists of 
integrated section aerodynamic loads and the blade section 
motion (or more generally, blade pressures and 
deformations). To combine the CFD and CSD codes 
requires a fluid-structure interface definition and a 
coupling strategy. In rotorcraft terminology, the interface 
methods are classified as tight coupling or loose coupling. 
For tight coupling, information is exchanged at every time 
step, often with staggered integration of the aerodynamic 
and structural dynamic equations, with an outer loop to 
handle trim. Tight coupling is required for problems 
involving time history solutions, such as aircraft 
maneuvers or aeroelastic stability assessment. Use of a 
time history solution method for steady-state operating 
conditions poses problems, particularly finding the 
periodic motion and the trim controls in the presence of 
low-damped or unstable modes, problems exacerbated by 
the computationally intensive nature of CFD. In loose 
coupling, information is exchanged for the entire 
revolution of periodic loads or motion, with separate time 

integration in the CFD and CSD codes, and trim 
(adjusting controls to achieve target rotor state) is part of 
the comprehensive analysis (CSD) as usual. 

Early in 1984, Chee Tung and Frank Caradonna of the 
U.S. Army were invited to contribute a paper to the 
aerodynamics session of the American Helicopter Society 
Forum. Having successfully applied CFD to rotors in 
hover and non-lifting forward flight, they turned their 
attention to the full problem of forward flight. The CFD 
analysis considered was the transonic small-disturbance 
code FDR, and the comprehensive analysis was 
CAMRAD. After encountering difficulties with direct 
application of the CFD airloads in the comprehensive 
analysis, they asked me to define a coupling strategy, and 
make the necessary modifications to CAMRAD. As 
described in reference 243: 

“A problem arises in matching FDR to a 
comprehensive rotor code when a trim condition 
must be obtained. A trim solution typically 
involves computing the inflow, blade motion, 
and lift distribution for over 10 rotor revolutions 
during which the rotor controls are adjusted to 
achieve the desired operating state. The lift 
distribution so computed must not only be 
consistent with the inflow and blade motion, but 
it must also reflect the three-dimensional, 
unsteady, transonic flow of high-speed rotors. 
However, inserting a finite-difference 
computation in the trim loop for 10 revolutions 
would be prohibitively expensive. A solution to 
this problem is to introduce an additional outside 
loop, iterating between the finite-difference and 
integral-equation analyses. Inside the trim loop, 
the lift distribution is found by using the airfoil 
tables to find a lift correction to the finite-
difference computed lift. That is, 

c (α ) = cCFD (α old ) + c table (α ) − ctable (α old )  

where α  and α old  are the angles of attack from 
the current and previous trim loops, respectively. 
The solution is converged when α → αold  and 
the lift correction vanishes—that is, when the 
finite-difference lift is fully consistent with the 
rotor inflow and motion.” 

Here the section lift coefficients are cCFD  from CFD 
(finite-difference) and ctable  from the comprehensive 
analysis (airfoil table). Reference 243 only considered lift 
coupling. The key to the coupling is to keep the 
comprehensive analysis aerodynamics active, responding 
to changes in blade motion and trim. The comprehensive 
analysis aerodynamics function as an estimate of the CFD 
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airloads due to these blade motion and trim changes. 
As long as this estimate is a sufficiently accurate 
approximation of the CFD load in the next iteration, the 
process will converge. This approach is also called the 
delta-coupling method, since the correction can be written 



c (α) = cext (αold ) + cα (α −αold )

= cext (αold ) + cint (α) − cold (αold )

= cint (α) + (cext (αold ) − cold (αold ))

= cint + Δc

 

where c ext  is the lift obtained from the external analysis; 

c  int  is the lift calculated by the comprehensive analysis; 
and c old  is the lift calculated by the comprehensive 
analysis in the previous iteration. The correction is 
formulated in a similar manner for drag and pitch moment, 
or for coefficients based on the speed of sound ( M 2c ), or 
for dimensional loads. When the iterations converge, the 
total load used in the comprehensive analysis equals the 
load calculated by CFD, which means no change of the 
delta load between iterations. 

The CFD/CSD coupling of reference 243 was complicated 
by characteristics of the CFD method FDR. This small-
disturbance analysis could only be applied to the outer 
part of the blade and only on the advancing side. The 
computational domain only included the wake a few chord 
lengths behind the blade (fig. 56). Thus, the boundary 
condition on the blade surface was implemented in terms 
of a partial angle of attack, accounting not only for the 
blade motion but also for the induced velocity from the 
wake outside the CFD domain (the partial inflow shown 
in fig. 56). Introducing the delta airloads in CAMRAD 
was a simple task; adding a calculation of the partial angle 
of attack required more extensive additions to the code. 

The coupled solution was calculated for a 1/7-scale model 
of the AH-1G rotor, and compared with test data from the 
German-Dutch Windtunnel (DNW). Good results were 
obtained for the upper surface pressures on the blade 
(fig. 57). The CFD/CSD coupling converged in three 
iterations. Reference 243 concluded: “The coupling 
scheme is one which allows two different and 
independently developed codes to jointly model an entire 
high-speed rotor flow with few program modifications. 
There were no convergence problems with the iteration 
scheme between the differential and integral codes. … A 
very limited examination of model-rotor pressure data 
indicates that the comparisons with the computations are 
not nearly of the same quality as has been achieved with 
non-lifting forward flight or lifting, high-speed hover 
model rotor data.” 

 

Figure 56. Matching of integral and differential rotor flow 
methods (ref. 243). 

 

Figure 57. A comparison of computed and experimental 
upper surface pressures, μ = 0.298 and r /R = 0.95 
(ref. 243). 
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Results obtained in the next decade using the loose 
coupling method were not satisfactory, either because 
convergence problems were encountered or because the 
correlation with the experiment was not improved. Datta 
(ref. 244) and Tung (ref. 245) summarize the history of 
the loose coupling method. Moment coupling was needed, 
since blade torsion motion has a direct influence on the 
loading, yet initially moment coupling either introduced 
convergence problems or did not improve results. 

Strawn and Tung coupled the full-potential code FPR with 
CAMRAD (ref. 246). The emphasis was on “including the 
effect of rotor wakes on the finite-difference prediction of 
rotor loads.” Only lift coupling was used, but for all 
azimuths. Results were compared with wind tunnel test 
data for the AH-1G model rotor, ONERA model rotor, 
and a blade-vortex interaction experiment. The correlation 
was similar to that shown in reference 243. Strawn and 
Tung (ref. 247) compared results from the coupled FPR 
and CAMRAD analysis with SA349/2 flight test data at 
high speed. In reference 248, FPR was coupled with 
CAMRAD/JA, and the airloads results compared with 
Puma flight test data. Again, only lift coupling was used. 
Because of the large cyclic pitch of the flight conditions 
considered, the treatment of unsteady airfoil motion in the 
context of the partial angle-of-attack boundary condition 
was an issue. 

Kim, Desopper, and Chopra (ref. 249) coupled a transonic 
small-disturbance code TSD with UMARC, and compared 
the results with SA349/2 flight test data. In order to obtain 
convergence with both lift and pitch moment coupling, a 
sequential procedure was used: first only lift coupling was 
used, iterating until the results converged; then pitch 
moment coupling was introduced, but with the three-
dimensional lift fixed. 

Strawn and Bridgeman (ref. 250) used FPR and 
CAMRAD/JA, with both lift and pitch moment coupling. 
The calculations were compared with Puma flight test 
data. They found that “computed airloads show good 
agreement with flight-test data when lift values from the 
FPR code are used in the coupled calculation. However, 
the computed airloads from CAMRAD/JA alone also 
show good agreement with the experimental data.” When 
pitch moment coupling was used, there were convergence 
problems with the coupling procedure. Thus, reference 
250 remarks: “It is unclear whether the current loosely-
coupled iterative procedure is appropriate for introducing 
CFD-computed airloads into helicopter performance 
predictions. A more tightly-coupled procedure may be 
required at considerable higher computational cost.” In an 
investigation of tight coupling between FPX (an extended 

version of the full potential code) and 2GCHAS, Lee, 
Saberi, and Ormiston (ref. 251) observed torsion 
divergence problems caused by lack of accuracy in the 
calculation of aerodynamic pitch moments. Reducing the 
time step and increasing the number of sub-iterations in 
the FPX calculation was necessary in order to obtain good 
pitch damping results. 

Beaumier (ref. 252) coupled the unsteady full potential 
code FP3D with R85/METAR, using over-relaxation to 
accelerate convergence. Combined lift and pitch moment 
coupling converged just as well as lift coupling alone, 
although requiring more iterations (6 and 3 iterations 
respectively). Comparisons were made with data from a 
wind tunnel test of a the ROSOH rotor, which had soft-
torsion blades. Using CFD improved the calculation of 
section lift, and CFD pitch moments had a significant 
effect on the torsion motion. The pitch moment correlation 
was not much better than for the comprehensive analysis 
results. 

Servera, Beaumier, and Costes (ref. 253) coupled the 
Euler code WAVES with HOST, using combined lift and 
pitch moment coupling. Calculated results were compared 
with wind tunnel test data on the 7A and 7AD rotors. The 
use of the Euler code improved the calculation of the pitch 
moment at the blade tip, through the change in the 1/rev 
content of the blade torsion. The calculation of the lift (the 
CFD and comprehensive analysis results were similar) and 
blade torsion were not improved. 

Pahlke and van der Wall (refs. 254–256) coupled the 
Euler/Navier–Stokes solver FLOWer with S4. Combined 
lift and pitch moment coupling was used, and the results 
compared with the 7A/7AD test data. Because of diffusion 
of the vorticity in the CFD calculations, the delta-airloads 
were filtered to retain only the harmonics up to 6/rev. The 
Navier–Stokes calculations improved the correlation with 
section lift, compared to the results using S4 alone. The 
improvement in pitch moment calculations was less 
satisfactory. 

Flight test data from the UH-60A Airloads Program have 
provided a foundation for recent developments of 
advanced aerodynamic models, including CFD/CSD 
coupling. Correlation efforts have focused on three 
operating conditions (fig. 58): high speed, with negative 
lift on the advancing side and transonic advancing-tip 
flow ( μ = 0.37, M at = 0.88 , and CT /σ = 0.084 ); low 
speed, exhibiting blade-vortex interaction on advancing 
and retreating side ( μ = 0.15, M at = 0.74 , and 
CT /σ = 0.076 ); and high thrust, with significant dynamic 
stall events ( μ = 0.24, M at = 0.82 , and CT /σ = 0.129 ). 
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Figure 58. UH-60A Airloads Program level flight 
operating conditions. 

 

Datta, Sitaraman, Baeder, and Chopra (refs. 257–258) 
coupled the Navier–Stokes code TURNS and UMARC. 
The Navier–Stokes computations were performed for the 
near-body domain of a single blade, with the effects of 
other blades included, using an induced inflow 
distribution (throughout the flow field) from a free-wake 
calculation. They compared the calculations with UH-60A 
Airloads Program data for the high-speed conditions. 
They concluded: “A 3D Navier-Stokes CFD based 
comprehensive analysis shows significant improvements 
in pitching moment predictions. Improved pitching 
moment predictions improve torsion-bending loads and 
elastic torsion deformation. Improved elastic torsion 
deformations improve vibratory normal force predictions 
at all radial stations.” Sitaraman, Datta, Baeder, and 
Chopra (ref. 259) coupled TURNS (using an overset mesh 
approach for full wake capture) and UMARC, and 
presented results for all three flight test conditions. 

In a paper presented in 2004, Potsdam, Yeo, and Johnson 
(ref. 260) coupled the Navier–Stokes code OVERFLOW-
D and CAMRAD II. The CFD code used high-fidelity, 
overset grid methodology with first-principles-based wake 
capturing. Loose coupling of normal force, chord force, 
and pitching moment was used. The three UH-60A 
Airloads Program flight test conditions described above 
were examined. The CFD calculations showed good 
correlation with measured lift and pitching moment for all 
three conditions, significantly improving upon results 
obtained using comprehensive analysis aerodynamic 
models. Reference 260 concluded: 

“CFD/comprehensive analysis coupled analysis 
can be a significant improvement over 
comprehensive lifting line aerodynamics with 

free wake and dynamic stall models. Normal 
force and pitching moment magnitudes are 
accurately captured in the coupled solutions. The 
shape of the airloads curves is usually quite 
accurate. 

The phase of the airloads in coupled solutions 
when compared with test data is very good for all 
flight conditions. The coupled solutions resolve 
past problems of airloads phase prediction using 
comprehensive analysis.” 

The blade-vortex interaction airloads were well predicted 
for the low-speed case, even though the far-field grid 
resolution (0.10 or 0.05 chord) was not sufficient to 
resolve tip vortex cores. Dynamic stall events were 
evident in the calculations, although more improvement is 
needed. When this work started there was some concern 
about the convergence of loose coupling in extreme 
conditions, but: 

“For all cases the loose coupling methodology is 
shown to be stable, convergent, and robust with 
full coupling of normal force, pitching moment, 
and chord force.” 

Thus, loose coupling has been confirmed as a sound and 
efficient method to obtain calculations of rotor loading 
using advanced models. 

Current implementations of loose coupling (such as 
reference 260) use an updated delta approach: 

(ΔF)n +1 = (Fext )n − (Fold )n

= (Fext )n − (Ftotal − ΔF)n

= (ΔF)n + (Fext − Ftotal )n

 

so it is not necessary to extract from the comprehensive 
analysis what the loading would be without the delta 
( Fold ). The update of the loading increment is just the 
current difference between the CFD loading ( Fext ) and 
the total comprehensive analysis loading ( Ftotal ). 

The accuracy and convergence of current implementations 
of loose coupling owe much to the use of CFD models 
that simulate all the blades and all the flow field. Even if 
the computationally intensive Navier–Stokes calculations 
are limited to the blade near field, with a hybrid or 
approximate model of the wake, the complete 
aerodynamic model belongs in the CFD part of the 
iteration, not the comprehensive analysis. Then the 
interface for the CFD boundary conditions consists of just 
the blade motion. 
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HOVER AIRLOADS 

 
Hover airloads and wake geometry measurements for 
correlation of rotor computational methods were obtained 
by Francis X. Caradonna and Chee Tung of the U.S. 
Army (refs. 261–262). Caradonna and Tung conducted a 
hover test of a stiff, two-bladed, teetering rotor with 
rectangular, untwisted blades and NACA 0012 airfoils 
(fig. 59). The simplicity of the configuration was chosen 
to facilitate analysis. The data were “gathered in the Army 
Aeromechanics Laboratory’s hover test facility, a large 
chamber with special ducting designed to eliminate room 
recirculation” (although some concern remains regarding 
influence of the chamber on the rotor flow). There were 
static pressure gages at five radial stations (three on each 
blade, with one radial station common between blades) 
and hot wire measurements of the tip vortices. Testing 
was conducted at several collective pitch values and a 
range of Mach numbers from low subsonic to transonic 
conditions ( M tip = 0.44 to 0.88). The pressure 
measurements were integrated chordwise to obtain section 
lift, and the rotor wake geometry was deduced from the 
hot wire measurements. The rotor came apart in the hover 
facility on the last day of testing, but all that was lost was 
the opportunity to take an installation photograph. Frank 
Caradonna still has the bent blade spar under his desk. 

The test was of a lifting rotor in hover (steady) at high tip 
Mach numbers. The objective was stated as (refs. 261–
262): 

“The present study is a benchmark test to aid the 
development of various rotor performance codes. 
The study involves simultaneous blade pressure 
measurements and tip vortex surveys. 
Measurements were made for a wide range of tip 
Mach numbers including the transonic flow 
regime. … However, there seem to be no useable 
data in the literature in which simultaneous blade 
load distribution and wake measurements were 
made. It is the intention of the present study to 
help fill this gap in the literature.” 

The goal of a “benchmark test” was certainly achieved, as 
to date there have been more than 160 reports and papers 
in which the data were used to validate a computational 
method. For example, in reference 263 the results from 
full potential and small disturbance models were 
compared with the pressure data (fig. 60). 

 

 

 

Figure 59. The model and experimental set up (ref. 261). 

 

Figure 60. Comparison of measured and calculated 
surface pressure results for hovering rotor, 
M tip = 0.877  and 8-degree collective pitch (ref. 263). 

ROTOR AIRLOADS TESTS 

 
“The knowledge of the distribution of the airloads on a 
rotor blade in flight is fundamental to an understanding of 
how a helicopter works and for the design of new and 
improved rotorcraft” (William G. Bousman, ref. 264). 
Flight test measurements of the aerodynamic pressures 
and structural loads on the rotating blades of a helicopter 
rotor are essential to developing an understanding of, and 
the capability to predict, the performance, loads, vibration, 
and noise of rotorcraft. In a survey of “all major wind 
tunnel and full-scale flight tests … to examine the nature 
of the vibratory aerodynamic loading which causes 
helicopter vibration,” Hooper (ref. 265) identified 10 
major airloads programs from 1956 to 1984, beginning
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with Rabbott and Churchill (ref. 71). Since 1956, there 
have been perhaps 40 airloads test programs conducted. 
Of these, 3 have proven to have substantial, lasting value: 
the H-34 flight test and wind tunnel test (refs. 72, 74, 
266–268), the UH-60A Airloads Program flight test and 
wind tunnel test (refs. 264 and 269), and the HART wind 
tunnel tests (refs. 270–271). My records show 76, 113, 
and 167 papers and reports based on the data from these 3 
test programs, respectively. 

H-34 flight test 

In 1961–1962, flight tests of an H-34 helicopter were 
conducted at NASA (fig. 61). From reference 74: 

“An extensive flight test program was conducted 
at the Langley Research Center to obtain 
helicopter rotor-blade airloads, bending 
moments, and blade motions. In addition, 
numerous flight parameters were recorded. The 
tabulated data presented herein are for forward 
speeds from 0 to 120 knots, flights in and out of 
ground effect, climbs, autorotations, maneuvers, 
and operations with forward and aft center-of-
gravity locations.” 

Three additional trim-level flight conditions were 
presented and discussed in reference 72, covering 
μ = 0.18 (blade-vortex interaction), μ = 0.23 (retreating 
blade stall), and μ = 0.11. The blades were instrumented 
with 49 differential pressure gages at 7 radial stations 
(fig. 62). There were 11 chordwise measurements at 
r = 0.85R , 5 chordwise at the 2 inboard radial stations, 
and 7 chordwise at the remaining stations. Reference 74 
provides a complete description of the geometric, inertial, 
and structural dynamic characteristics of the blades. 

The instrumented rotor was mounted on a test stand and 
tested in the 40- by 80-Foot Wind Tunnel at NASA Ames 
Research Center in September 1964 (fig. 63, refs. 266–
268). The NASA Project Engineer was John L. McCloud 
III. From reference 266: “The purpose of the present 
investigation was to extend the range of available 
aerodynamic and structural loading data to higher forward 
speeds.” The maximum level flight speed in the flight test 
was 115 knots (ref. 74), giving μ = 0.29. The wind tunnel 
test covered speeds of 110, 150, and 175 knots ( μ = 0.29, 
0.39, and 0.45) at shaft angles of α s = −5 , 0, and 
5 degrees. Seven pressure gages were added at two tip 
radial stations, for a total of 56 differential pressure gages 
(fig. 64). A difficulty with the control system was 
encountered in the test program (ref. 266): 

“Certain modifications to the CH-34 control 
system were made to minimize pitch-lag 

coupling and to provide for adequate strength to 
react the anticipated control loads which, at the 
high speeds and advance ratios possible in the 
wind tunnel, were expected to be in excess of the 
CH-34 design loads. The swashplate, scissors, 
and control horn were redesigned. … 

In anticipation of the high control loads that 
would be generated at high tunnel speeds, the 
control system was modified and strengthened as 
described previously. However, the modification 
resulted in an unusual control system kinematic 
coupling such that two adjacent blades had a 
slightly different cyclic pitch from the other two 
adjacent blades, which resulted in a “split” tip 
path plane whenever cyclic pitch was applied. 
The instrumented blade and the preceding blade 
(whose vortex system has the primary influence 
on the following blade) were always in plane, but 
the other two blades were flapped approximately 
one degree higher.” 

Figure 65 is a sketch by McCloud of the rotating scissors 
change that was responsible for the difference in cyclic 
pitch. In order to minimize the tip-path plane split, the test 
was not conducted as originally planned, with zero first 
harmonic flapping relative to the shaft. The longitudinal 
flapping magnitude ranged from 0 to 1.8 degrees for the 
test conditions, and the lateral flapping ranged from 2.8 to 
4.4 degrees. 

The test data were discussed in referencess 74, 266, 268, 
and 272–274. Rabbott (ref. 275) compared small-scale 
and full-scale test data.  

The H-34 flight test data found immediate use in 
developing rotor wake models (particularly the test points 
in reference 72), use that continues today (refs. 58, 62, 67, 
276–280). Both Miller (fig. 17, ref. 58) and Piziali 
(fig. 24, ref. 67) compared airloads calculations with the 
H-34 data. Ward (ref. 274) used the flight test data to 
explore the aerodynamics of maneuvers. The H-34 wind 
tunnel data was the principal information Hooper 
(ref. 265) used to examine the blade vibratory 
aerodynamic loading. In this investigation he identified 
the possible influence in high speed of blade-vortex 
interaction with the opposite sign compared to low speed, 
due to the negative loading on the tip of the advancing 
blade. Yeo and Johnson (refs. 279–280) included both the 
wind tunnel data and the flight test data in a correlation of 
airloads and structural loads with CAMRAD II 
calculations. 
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Figure 61. H-34 flight test aircraft (ref. 74). 

 

 

Figure 62. Blade planform and instrumentation for the  
H-34 flight test (ref. 74). 

 

Figure 63. H-34 airloads rotor in the 40- by 80-Foot 
Wind Tunnel. 

 

 

Figure 64. Blade planform and instrumentation for the  
H-34 wind tunnel test (ref. 268). 

 

Figure 65. Rotating scissors geometry for the H-34 wind 
tunnel model (John L. McCloud III). 

UH-60A Airloads Program 

Flight tests of a UH-60A helicopter were conducted at 
Ames Research Center in 1993–1994 (fig. 66). The UH-
60A Airloads Program “was designed to overcome 
weaknesses of past programs in terms of the quality and 
quantity of data, the bandwidth of the data, and ease of 
accessibility to the data” (ref. 264). Bousman (ref. 281) 
described the history of the program: 

“The UH–60A Airloads Program was carried out 
by NASA Ames Research Center and the U.S. 
Army Aeroflightdynamics Directorate from 1984 
to 1994, when flight testing was completed.  

In the mid-1980s, NASA Ames Research Center 
devised an elaborate plan to extensively test 
seven or more modern rotors and develop a data 
base that would include flight test data, wind 
tunnel data, model-scale data, and fuselage shake 
test data for these helicopters and their rotors 
[ref. 282]. The first helicopter selected under this 
plan was the UH–60A. A contract was let with 
Sikorsky Aircraft in 1985 for the construction of 
a set of test hardware that included one blade 
with 242 pressure transducers and a second blade 
instrumented with strain gauges and 
accelerometers. Model-scale testing of this rotor 
system was accomplished under separate U.S. 
Army programs [refs. 283–284]. 

The instrumented rotor blades were delivered to 
NASA Ames Research Center at the end of 1988. 
However, the integration of the extensive suite of 
rotor instrumentation and the hub-mounted 
Rotating Data Acquisition System (RDAS) 
became the critical element in the test program. 



56 

Tests of early versions of the RDAS system in 
1991 and 1992 were unsuccessful. The third 
RDAS system was demonstrated successfully at 
the end of 1992 and flight testing was scheduled 
to start in the summer of 1993. 

On May 14, 1993 the UH–60A Airloads Program 
was cancelled by NASA Ames Research Center 
because of budget shortfalls. However, funding 
was in place to allow testing through the end of 
the fiscal year, September 30, 1993. Flights 82 to 
85 were flown prior to the end of September, and 
NASA reprogrammed funds to allow testing to 
continue through the end of February 1994 when 
Flight 116 was completed.” 

The test program was described in reference 264. Flight 
tests were conducted from August 1993 to February 1994. 
There were 31 research flights for a total of 57 flight 
hours. Over 900 different test conditions were recorded, 
processed, and stored in an electronic data base (ref. 269). 
The test conditions included hover, level flight, climbs 
and descents, and maneuvers. Figure 67 illustrates some 
of the test conditions. The blades were instrumented with 
241 (ref. 269) absolute pressure gages, 221 in chordwise 
arrays at 9 radial stations (20 per section inboard, 30 per 
section near the tip) and the remainder along the leading 
edge (fig. 68). 

The flight test data were discussed in refs. 285–290, 
including the maneuver data. Tung, Bousman, and Low 
(ref. 291) compared small-scale and full-scale test data. 

The instrumented rotor was mounted on the LRTA (Large 
Rotor Test Apparatus) and tested in the 40- by 80-Foot 
Wind Tunnel in March–May 2010 (fig. 69). Reference 
292 provides an overview of the wind tunnel test. 

The UH-60A Airloads Program data are being used 
extensively to develop advanced aerodynamics models, 
including CFD/CSD coupling. Correlation efforts have 
focused on three operating conditions (fig. 58), as well as 
the UTTAS maneuver. 

 

 

Figure 66. UH-60A Airloads aircraft over the Livermore 
valley (ref. 269). 

 

Figure 67. UH-60A Airloads Program test conditions. 
 

 

Figure 68. UH-60A blade planform and instrumentation 
(ref. 269). 
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Figure 69. UH-60A Airloads rotor in the 40- by 80-Foot 
Wind Tunnel. 

 

 

Figure 70. HART I rotor test in the DNW wind tunnel. 

 

 

Figure 71. HART II rotor test in the DNW wind tunnel. 

 

HART wind tunnel tests 

Wind tunnel tests of a model Bo-105 rotor with higher 
harmonic control were conducted in June 1994 (HART I, 
fig. 70) and October 2001 (HART II, fig. 71). The tests 
are described in references 293–298. From reference 293: 

“In a major cooperative program within existing 
US-German and US-French Memoranda of 
Understanding (MOUs), researchers from the 
German DLR, the French ONERA, NASA 
Langley, and the US Army Aeroflightdynamics 
Directorate (AFDD) conducted a comprehensive 
experimental program with a 40%-geometrically 
and aeroelastically scaled model of a BO-105 
main rotor in the open-jet anechoic test section of 
the German-Dutch Windtunnel (DNW) in The 
Netherlands. The objective of the program was to 
improve the basic understanding and the 
analytical modeling of the effects of the higher 
harmonic pitch control technique on rotor noise 
and vibration reduction. Comprehensive acoustic, 
aerodynamic, dynamic, performance, and rotor 
wake data were obtained with a pressure-
instrumented rotor blade. This international 
cooperative project carries the acronym HART 
(Higher-harmonic-control Aeroacoustics Rotor 
Test).” 

The HART program started in 1990 and was concluded in 
2010. The test directors were Roland Kube of DLR for 
HART I and Berend van der Wall of DLR for HART II. 
For both tests, Casey Burley of NASA led the prediction 
team activity as well as assisted the test directors. 

The HART I blades were instrumented with 124 absolute 
pressure gages in 3 radial stations (fig. 72a). The 
chordwise arrays had 44 gages at r = 0.75R  and 
r = 0.97R , and 24 gages at r = 0.87R . 

The objective of the HART II test was to obtain more 
extensive particle image velocimetry (PIV) measurements 
of the rotor wake (ref. 298); figure 73 illustrates the PIV 
measurement locations. The focus of HART II was on 
three conditions at μ = 0.15: a baseline case without 
higher-harmonic control, and minimum noise and 
minimum vibration cases with 3/rev higher-harmonic 
control (both 0.8 degrees amplitude, different phases). 
From reference 297: 

“Due to an accident in a preceding test the Bo105 
model rotor used during the HART test of 1994 
was not available. An existing uninstrumented 
Bo105 model rotor was thus upgraded with 51 
absolute pressure transducers for the HART II 
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test. However, the rotor, although designed for 
the same fundamental frequencies in flap, lead-
lag and torsion, had different behaviour in torsion 
due to a different design of the main spar and the 
location of the elastic and the center of gravity 
axis.” 

Thus, for HART II, the blades had 51 absolute pressure 
gages on two blades, mainly at r = 0.87R  (fig. 72b). 

The HART data are being used extensively to develop 
advanced aeroacoustics models for rotor blades. The test 
data are limited by the scale of the rotor, and by only 
consisting of pressure data at a few (three or one) radial 
stations near the blade tip. The HART program, however, 
includes higher-harmonic control, extensive acoustic and 
wake flow field measurements, and involves an 
international team of researchers. 

 

 

Figure 72. Blade planform and instrumentation for the 
HART wind tunnel tests (ref. 271). 

 

 

Figure 73. PIV test matrix (ref. 271). 

 

CONCLUSION 

 
The milestones in rotorcraft aeromechanics discussed 
herein are summarized in Table 1. It is a subjective list; 
others would no doubt make different choices. The list 
reflects my belief that a perspective of some years is 
needed to judge an event to be a critical achievement or a 
turning point, so we can see what made a difference.  

The future will produce experiments that so define an 
issue that they achieve universal acceptance as essential 
bases for correlation, and produce theories that take the 
models and codes to the next level of simulation of rotary-
wing aircraft. We know that there will be steady progress 
to advance our capability in all the disciplines of 
aeromechanics. Most of this progress will be achieved by 
many steps from numerous contributors. Sometimes there 
will be a critical idea or a unique insight—a new 
milestone—that changes the way we understand, attack, 
and solve a problem. 

One lesson from this examination of aeromechanics is that 
care should be taken to compose good introductions for 
our papers and reports. Remember that we are writing for 
the historical record. It was helpful to be able to discuss 
the work with its authors. In some cases I discovered that 
the sequence of events was not as I had long believed. 
Several topics were dropped from consideration because I 
could not find a single critical event to call a milestone. 

The focus on milestones was necessary to limit the scope 
of this history. The format allowed me to acknowledge 
work that I consider to be key steps in the development of 
the science and engineering of rotorcraft. A consequence 
of this approach is that now I would very much look 
forward to seeing a complete history of rotorcraft 
aeromechanics. 
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